Skip to main content
Log in

Efficient simulation of discrete stochastic reaction systems with a splitting method

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Stochastic reaction systems with discrete particle numbers are usually described by a continuous-time Markov process. Realizations of this process can be generated with the stochastic simulation algorithm, but simulating highly reactive systems is computationally costly because the computational work scales with the number of reaction events. We present a new approach which avoids this drawback and increases the efficiency considerably at the cost of a small approximation error. The approach is based on the fact that the time-dependent probability distribution associated to the Markov process is explicitly known for monomolecular, autocatalytic and certain catalytic reaction channels. More complicated reaction systems can often be decomposed into several parts some of which can be treated analytically. These subsystems are propagated in an alternating fashion similar to a splitting method for ordinary differential equations. We illustrate this approach by numerical examples and prove an error bound for the splitting error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfonsi, A., Cancès, E., Turinici, G., Ventura, B.D., Huisinga, W.: Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems. In: ESAIM: Proc., vol. 14, pp. 1–13 (2005)

  2. Anderson, D.F., Ganguly, A., Kurtz, T.G.: Error analysis of tau-leap simulation methods. Ann. Appl. Probab. (2010, to appear). arXiv:0909.4790v2 [math.PR]

  3. Banasiak, J.: A complete description of dynamics generated by birth-and-death problem: a semigroup approach. In: Rudnicki, R. (ed.) Mathematical Modelling of Population Dynamics. Collection of Papers from the Conference, Będlewo, Poland, June 24–28, 2002. Banach Center Publications, vol. 63, pp. 165–176 . Polish Academy of Sciences, Institute of Mathematics, Warsaw (2004)

    Google Scholar 

  4. Burrage, K., Tian, T.: Poisson Runge-Kutta methods for chemical reaction systems. In: Sun, Y.L.W., Tang, T. (eds.) Advances in Scientific Computing and Applications, pp. 82–96. Science Press, Beijing (2004)

    Google Scholar 

  5. Burrage, K., Tian, T., Burrage, P.: A multi-scaled approach for simulating chemical reaction systems. Prog. Biophys. Mol. Biol. 85, 217–234 (2004)

    Article  Google Scholar 

  6. Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys. 121, 4059 (2004)

    Article  Google Scholar 

  7. Cao, Y., Gillespie, D.T., Petzold, L.: Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. J. Comput. Phys. 206(2), 395–411 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. J. Chem. Phys. 123, 054104 (2005)

    Article  Google Scholar 

  9. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122, 014116 (2005)

    Article  Google Scholar 

  10. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, 044109 (2006)

    Article  Google Scholar 

  11. Descombes, S., Schatzman, M.: Strang’s formula for holomorphic semi-groups. J. Math. Pures Appl. Sér. IX 81(1), 93–114 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. E, W., Liu, D., Vanden-Eijnden, E.: Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys. 123, 194107 (2005)

    Article  Google Scholar 

  13. Engblom, S.: Numerical Solution Methods in Stochastic Chemical Kinetics. PhD thesis, Uppsala University (2008)

  14. Faou, E.: Analysis of splitting methods for reaction-diffusion problems using stochastic calculus. Math. Comput. 78, 1467–1483 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Ferm, L., Hellander, A., Lötstedt, P.: An adaptive algorithm for simulation of stochastic reaction-diffusion processes. J. Comput. Phys. 229(2), 343–360 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

    Google Scholar 

  17. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  18. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716 (2001)

    Article  Google Scholar 

  19. Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys. 119, 8229 (2003)

    Article  Google Scholar 

  20. Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122, 184102 (2005)

    Article  Google Scholar 

  21. Gradinaru, V.: Strang splitting for the time dependent Schrödinger equation on sparse grids. SIAM J. Numer. Anal. 46, 103–123 (2007)

    Article  MathSciNet  Google Scholar 

  22. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Hansen, E., Ostermann, A.: Exponential splitting for unbounded operators. Math. Comput. 78, 1485–1496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT 49(3), 527–542 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Haseltine, E.L., Rawlings, J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117, 6959 (2002)

    Article  Google Scholar 

  26. Hegland, M.: Approximating the solution of the chemical master equation by aggregation. In: Mercer, G.N., Roberts, A.J. (eds.) Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, ANZIAM J. 50, C371–C384 (2008)

  27. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Jahnke, T.: Splittingverfahren für Schrödingergleichungen. Wiss. Arbeit für das Staatsexamen, Universität Tübingen, Germany (1999)

  30. Jahnke, T.: An adaptive wavelet method for the chemical master equation. SIAM J. Sci. Comput. 31(6), 4373–4394 (2010)

    Article  MathSciNet  Google Scholar 

  31. Jahnke, T., Huisinga, W.: Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54(1), 1–26 (2007)

    Article  MathSciNet  Google Scholar 

  32. Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings. BIT 40(4), 735–744 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Li, T.: Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. Multiscale Model. Simul. 6(2), 417–436 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lubich, C.: A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math. 48(3–4), 355–368 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. McAdams, H.H., Arkin, A.P.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. 94, 814–819 (1997)

    Article  Google Scholar 

  37. McAdams, H.H., Arkin, A.P.: It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–69 (1999)

    Article  Google Scholar 

  38. McLachlan, R.I., Quispel, G.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Neuhauser, C., Thalhammer, M.: On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential. BIT 49(1), 199–215 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys. 118, 4999 (2003)

    Article  Google Scholar 

  41. Rathinam, M., El Samad, H.: Reversible-equivalent-monomolecular tau: a leaping method for “small number and stiff” stochastic chemical systems. J. Comput. Phys. 224(3), 897–923 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. J. Chem. Phys. 119, 12784 (2003)

    Article  Google Scholar 

  43. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Model. Simul. 4(3), 867–895 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122, 054103 (2005)

    Article  Google Scholar 

  45. Solari, H.G., Natiello, M.A.: Stochastic population dynamics: The Poisson approximation. Phys. Rev. E 67, 031918 (2003)

    Article  Google Scholar 

  46. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218(3), 309–321 (2002)

    Article  MathSciNet  Google Scholar 

  47. Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46(4), 2022–2038 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Jahnke.

Additional information

Communicated by Uri Ascher.

Supported by the “Concept for the Future” of Karlsruhe Institute of Technology within the framework of the German Excellence Initiative, the DFG priority programme SPP 1324 “Mathematische Methoden zur Extraktion quantifizierbarer Information aus komplexen Systemen”, and a grant of the Middle East Technical University, Ankara, Turkey and Selçuk University, Konya, Turkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahnke, T., Altıntan, D. Efficient simulation of discrete stochastic reaction systems with a splitting method. Bit Numer Math 50, 797–822 (2010). https://doi.org/10.1007/s10543-010-0286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0286-0

Keywords

Mathematics Subject Classification (2000)

Navigation