Skip to main content
Log in

Metabolic responses of microbiota to diesel fuel addition in vegetated soil

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The effects of trees and contamination on microbial metabolic activity, especially that of hydrocarbon degrading bacteria, were compared during phytoremediation to find which conditions increase diesel fuel removal. Diesel fuel utilisation, microbial extracellular enzyme activities and utilisation of Biolog ECO plate carbon sources by soil bacteria were determined during phytoremediation experiments consisting of two separate diesel applications. Diesel fuel removal after 28 days of second diesel application was 20–30% more than after the first application 1 year earlier. Soil microbiota utilised 26–31 of the 31 Biolog ECO plate carbon sources. Carbon source utilisation profiles indicated minor differences in microbiota in soil vegetated with pine compared to microbiota in soil vegetated with poplar. The potential maximum rates of aminopeptidase activity were 10–102 μM AMC/h/g dry soil prior to and after second diesel application, except 14 days after the second diesel addition, where the rates were at the scale of 103μM AMC/h/g dry soil. The potential maximum rates of esterase activity were 103–104μM MUF/h/g dry soil. The presence of plants did not influence the activity of esterases. The utilisation of diesel by soil bacteria in Biolog MT2 plate assay was higher in contaminated soil, especially when vegetated, than in uncontaminated soil, measured both as lag times and maximum specific utilisation rates. MT2 plate assay detected the biological response after diesel fuel addition better than general activity methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson TA, Guthrie EA & Walton BT (1993) Bioremediation in the rhizosphere. Environ. Sci. Technol. 27: 2630–2636

    Google Scholar 

  • Baudoin E, Benizri E & Guckert A (2001) Metabolic fingerprint of microbial communities from distinct maize rhizosphere compartments. Eur. J. Soil. Biol. 37: 85–93

    Google Scholar 

  • Biolog (2000) EcoPlate™ brochure. Biolog Inc., Hayward

  • Brohon B, Delolme C & Gourdon R (2001) Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil. Biol. Biochem. 33: 883–891

    Google Scholar 

  • Broughton LC & Gross KL (2000) Patterns of diversity in a plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125: 420–427

    Google Scholar 

  • Burlage RS, Atlas R, Stahl D, Geesey G & Sayler G (Eds) (1998) Techniques in Microbial Ecology. Oxford University Press, New York

    Google Scholar 

  • Campbell CD, Grayston SJ & Hirst DJ (1997) Use of rhizosphere carbon sources to discriminate soil microbial communities. J. Microbiol. Meth. 30: 33–41

    Google Scholar 

  • Cunningham SD & Berti WR (1993) The remediation of contaminated soils with green plants: an overview. In vitro Cell. Dev. Biol. 29P: 207–212

    Google Scholar 

  • Cunningham SD, Berti WR & Huang JW (1995) Phytoremediation of Contaminated Soils. Trends Biotechnol. 13: 393–397

    Google Scholar 

  • Dobler R, Saner M & Bachofen R (2000) Population changes of soil microbial communities induced by hydrocarbon and metal contamination. Biorem. J. 4: 41–56

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO), International Society of Soil Science (ISSS) & International Soil Reference and Information Centre (ISRIC) (1998) World reference base for soil resources. 84 World Soil Resources Reports, Rome

  • Fulthorpe RR & Allen DG (1994) Evaluation of Biolog MT plates for aromatic and chloroaromatic substrate utilisation tests. Can. J. Microbiol. 40: 1067–1071

    Google Scholar 

  • Garland JL & Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microb. 57: 2351–2359

    Google Scholar 

  • Howard PJA (1997) Analysis of data from Biolog plates: comments on the method of Garland and Mills. Soil Biol. Biochem. 29: 1755–1757

    Google Scholar 

  • Kähkönen MA (2003) Biodegradation activities in coniferous forest soils and freshwater sediments. Dissertationes Biocentri. Viikki Universitatis Helsingiensis 2/2003 (p.43), Helsinki

  • Kandeler E, Palli S, Stemmer M & Gerzabek MH (1999) Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biol. Biochem. 31: 1253–1264

    Google Scholar 

  • Marx M-C, Wood M & Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soil. Soil Biol. Biochem. 33: 1633–1640

    Google Scholar 

  • Naseby DC & Lynch JM (2002) Enzymes and microorganisms in the rhizosphere. In: Burns RG & Dick RP (Eds) Enzymes in the environment, Activity, Ecology and Applications (pp109–123). Marcel Dekker, New York

    Google Scholar 

  • Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresource Technol. 84: 221–228

    Google Scholar 

  • Quiquampoix H, Servagent-Noinville S & Baron M-H (2002) Enzyme adsorption on soil mineral surfaces and consequences for the catalytic activity. In: Burns RG & Dick RP (Eds) Enzymes in the Environment, Activity, Ecology and Applications (pp 285–306). Marcel Dekker, New York

    Google Scholar 

  • Speir TW & Ross DJ (2002) Hydrolytic enzyme activities to assess soil degradation and recovery. In: Burns RG & Dick RP (Eds) Enzymes in the Environment, Activity, Ecology and Applications (pp 407–431). Marcel Dekker, New York

    Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma 99: 169–198

    Google Scholar 

  • Strong-Gunderson JM & Palumbo AV (1994) Alternative method for rapidly screening microbial isolates for their potential to degrade volatile contaminants. J. Ind. Microbiol. 13: 361–366

    PubMed  Google Scholar 

  • Tate RL III (2002) Microbiology and enzymology of carbon and nitrogen cycling. In: Burns RG & Dick RP (Eds) Enzymes in the Environment, Activity, Ecology and Applications (pp 227–248). Marcel Dekker, New York

    Google Scholar 

  • van Hees PAW, Jones DL & Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol. Biochem. 34: 1261–1272

    Google Scholar 

  • Vepsäläinen M, Kukkonen S, Vestberg M, Sirviö, H & Niemi M (2001) Application of soil enzyme activity test kit in a field experiment. Soil Biol. Biochem. 33: 1665–1672

    Google Scholar 

  • Wellington EMH & Toth IK (1994) Actinomycetes. In: Weaver RW (Eds) Methods in Soil Analysis. Part 2. Microbiological and Biochemical Properties (pp 269–290). SSSA Book Ser. 5. SSSA, Madison, WI

    Google Scholar 

  • Wünsche L, Brüggemann L & Babel W (1995) Determination of substrate utilisation patterns of soil microbial communities: an approach to assess population changes after hydrocarbon pollution. FEMS Microbiol. Ecol. 17: 295–306

    Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM & van't Riet K (1990) Modeling of bacterial growth curve. Appl. Environ. Microb. 56: 1875–1881

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmroth, M.R., Münster, U., Pichtel, J. et al. Metabolic responses of microbiota to diesel fuel addition in vegetated soil. Biodegradation 16, 91–101 (2005). https://doi.org/10.1007/s10531-004-0626-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-004-0626-y

Navigation