Skip to main content

Advertisement

Log in

Physicochemical and morphological degradation of stream and river habitats increases invasion risk

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

One of the key challenges of invasion biology in aquatic systems is determining the environmental conditions under which non-indigenous species establish populations in new habitats. It is widely believed that environmental degradation of streams and rivers may facilitate susceptibility to invasion; however, this has not yet been demonstrated consistently across a wide range of taxonomic groups. We analyzed macroinvertebrate data from 398 stream and river sites in Germany in order to test whether morphologically and physicochemically degraded stream and river habitats are more prone to invasion. Further, we identified the most important environmental variables facilitating invasion. The study confirmed that invaded sites were significantly more degraded than sites where only indigenous species were recorded. In both streams and rivers, invaded sites featured increased maximum temperatures, chloride and total organic carbon concentrations and a decreased morphological habitat quality. In streams, additionally the variables minimum temperature, oxygen, orthophosphate and ammonium contributed to greater degradation. In rivers also nitrate concentration was increased at invaded sites. Generalized linear models indicated that chloride was one of the most important variables that favored invasibility in both streams and rivers. In streams, the most indicative variables for invasion risk also included orthophosphate and maximum temperature. In rivers, in addition to chloride, morphological habitat quality was important. Our results confirm that the physicochemical and morphological intactness of riverine systems is a safeguard against invasion of aquatic non-indigenous macroinvertebrates. Based on this knowledge, management strategies can be developed to reduce invasion risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso A, Camargo JA (2003) Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull Environ Contam Toxicol 70(5):1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Castro-Diez P (2008) What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614(1):107–116

    Article  Google Scholar 

  • Byers JE (2000a) Competition between two estuarine snails: Implications for invasions of exotic species. Ecology 81(5):1225–1239

    Article  Google Scholar 

  • Byers JE (2000b) Differential susceptibility to hypoxia aids estuarine invasion. Mar Ecol-Prog Ser 203:123–132

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58(9):1255–1267

    Article  PubMed  CAS  Google Scholar 

  • DAISIE Delivering Alien Invasive Species Inventories for Europe (2010) European Invasive Alien Species Gateway. http://www.europe-aliens.org/. Accessed 1 Nov 2010

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534

    Article  Google Scholar 

  • Dextrase AJ, Mandrak NE (2006) Impacts of alien invasive species on freshwater fauna at risk in Canada. Biol Invasions 8(1):13–24

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20(9):470–474

    Article  PubMed  Google Scholar 

  • Effler SW, Matthews DA, Brooks-Matthews CM, Perkins MG, Siegfried CA, Hassett JM (2004) Water quality impacts and indicators of metabolic activity of the zebra mussel invasion of the Seneca River. J Am Water Resour Assoc 40(3):737–754

    Article  CAS  Google Scholar 

  • Genovesi P, Shine C (2004) European strategy on invasive alien species: Convention on the Conservation of European Wildlife and Natural Habitats. Council of Europe Publishing, Strasbourg Cedex

    Google Scholar 

  • Gollasch S, Nehring S (2006) National checklist for aquatic alien species in Germany. Aquat Invasions 1(4):245–269

    Article  Google Scholar 

  • Grabowski M, Bacela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84

    Article  Google Scholar 

  • Grabowski M, Bacela K, Konopacka A, Jazdzewski K (2009) Salinity-related distribution of alien amphipods in rivers provides refugia for native species. Biol Invasions 11(9):2107–2117

    Article  Google Scholar 

  • Haase P, Lohse S, Pauls S, Schindehütte K, Sundermann A, Rolauffs P, Hering D (2004) Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macro invertebrate sampling and sorting. Limnologica 34(4):349–365

    Article  Google Scholar 

  • Haase P, Sundermann A, Schindehütte K (2006) Informationstext zur Operationellen Taxaliste als Mindestanforderung an die Bestimmung von Makrozoobenthosproben aus Fließgewässern zur Umsetzung der EU-Wasserrahmenrichtlinie in Deutschland—Stand März 2006. http://www.fliessgewaesserbewertung.de/downloads/Informationstext_zur_Operationellen_Taxaliste_Stand_17Mrz06.pdf. Accessed 10 Dec 2010

  • Havel JE, Lee CE, Vander Zanden MJ (2005) Do reservoirs facilitate invasions into landscapes? Bioscience 55(6):518–525

    Article  Google Scholar 

  • Hong ML, Chen LQ, Sun XJ, Gu SZ, Zhang L, Chen Y (2007) Metabolic and immune responses in Chinese mitten-handed crab (Eriocheir sinensis) juveniles exposed to elevated ambient ammonia. Comp Biochem Physiol C-Toxicol Pharmacol 145(3):363–369

    Article  PubMed  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm. Accessed 17 Nov 2010

  • Johnson PTJ, Olden JD, vander Zanden MJ (2008) Dam invaders: impoundments facilitate biological invasions into freshwaters. Front Ecol Environ 6(7):359–365

    Article  Google Scholar 

  • Kamp U, Binder W, Hölzl K (2007) River habitat monitoring and assessment in Germany. Environ Monit Assess 127(1):209–226

    Article  PubMed  Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK, Mastitsky SE, Olenin S (2009) Invaders are not a random selection of species. Biol Invasions 11(9):2009–2019

    Article  Google Scholar 

  • Kestrup AM, Ricciardi A (2009) Environmental heterogeneity limits the local dominance of an invasive freshwater crustacean. Biol Invasions 11(9):2095–2105

    Article  Google Scholar 

  • LAWA Länderarbeitsgemeinschaft Wasser (1998) Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland—Chemische Gewässergüteklassifikation-. Kulturbuchverlag, Berlin

    Google Scholar 

  • LAWA Länderarbeitsgemeinschaft Wasser (2000) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland—Verfahren für kleine und mittelgroße Fließgewässer. Kulturbuchverlag, Berlin

    Google Scholar 

  • Leuven R, van der Velde G, Baijens I, Snijders J, van der Zwart C, Lenders HJR, de Vaate AB (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biol Invasions 11(9):1989–2008

    Article  Google Scholar 

  • Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, Berlin

    Google Scholar 

  • Lövei GL (1997) Biodiversity—global change through invasion. Nature 388(6643):627–628

    Article  Google Scholar 

  • MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86(1):42–55

    Article  Google Scholar 

  • MacNeil C, Dick JTA, Elwood RW (2000) Differential physico-chemical tolerances of amphipod species revealed by field transplantations. Oecologia 124(1):1–7

    Article  Google Scholar 

  • MacNeil C, Montgomery WI, Dick JTA, Elwood RW (2001) Factors influencing the distribution of native and introduced Gammarus spp. Irish river systems. Archiv Fur Hydrobiologie 151(3):353–368

    Google Scholar 

  • MacNeil C, Dick JTA, Gell FR, Selman R, Lenartowicz P, Hynes HBN (2009) A long-term study (1949–2005) of experimental introductions to an island; freshwater amphipods (Crustacea) in the Isle of Man (British Isles). Divers Distrib 15(2):232–241

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288

    Article  Google Scholar 

  • Piscart C, Dick JTA, McCrisken D, MacNeil C (2009) Environmental mediation of intraguild predation between the freshwater invader Gammarus pulex and the native G. duebeni celticus. Biol Invasions 11(9):2141–2145

    Article  Google Scholar 

  • Pöckl M (2009) Success of the invasive Ponto-Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biol Invasions 11(9):2021–2041

    Article  Google Scholar 

  • Prenter J, MacNeil C, Dick JTA, Riddell GE, Dunn AM (2004) Lethal and sublethal toxicity of ammonia to native, invasive, and parasitised freshwater amphipods. Water Res 38(12):2847–2850

    Article  PubMed  CAS  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22(3):521–533

    Article  PubMed  Google Scholar 

  • Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18(11):561–566

    Article  Google Scholar 

  • Schreiber ESG, Quinn GP, Lake PS (2003) Distribution of an alien aquatic snail in relation to flow variability, human activities and water quality. Freshw Biol 48(6):951–961

    Article  Google Scholar 

  • Schulz M, Bischoff M (2008) Variation in riverine phosphorus between 1994 and 2003 as affected by land-use and loading reductions in six medium-sized to large German rivers. Limnologica 38(2):126–138

    Article  CAS  Google Scholar 

  • Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55:152–174

    Article  Google Scholar 

  • van der Velde G, Leuven R, Platvoet D, Bacela K, Huijbregts MAJ, Hendriks HWM, Kruijt D (2009) Environmental and morphological factors influencing predatory behaviour by invasive non-indigenous gammaridean species. Biol Invasions 11(9):2043–2054

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continuum concept. Can J Fish Aquat Sci 37(1):130–137

    Article  Google Scholar 

  • Vermonden K, Leuven R, van der Velde G (2010) Environmental factors determining invasibility of urban waters for exotic macroinvertebrates. Divers Distrib 16(6):1009–1021

    Article  Google Scholar 

  • Vitousek PM, Dantonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21(1):1–16

    Google Scholar 

  • Weitere M, Vohmann A, Schulz N, Linn C, Dietrich D, Arndt H (2009) Linking environmental warming to the fitness of the invasive clam Corbicula fluminea. Global Change Biol 15(12):2838–2851

    Article  Google Scholar 

  • Werner S, Rothhaupt KO (2008) Mass mortality of the invasive bivalve Corbicula fluminea induced by a severe low-water event and associated low water temperatures. Hydrobiologia 613:143–150

    Article  Google Scholar 

  • Wijnhoven S, van Riel MC, van der Velde G (2003) Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquat Ecol 37(2):151–158

    Article  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5(9):475–482

    Article  Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23(5):431–452

    Article  Google Scholar 

  • Zukowski S, Walker KF (2009) Freshwater snails in competition: alien Physa acuta (Physidae) and native Glyptophysa gibbosa (Planorbidae) in the River Murray, South Australia. Mar Freshw Res 60(10):999–1005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Umweltbundesamt and the Hessisches Landesamt für Umwelt und Geologie (HLUG) for kindly providing the species and physicochemical and morphological data. Further, we wish to thank Sami Domisch, Heike Kappes and two anonymous referees for constructive comments. The present study was funded by the research funding program “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Früh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Früh, D., Stoll, S. & Haase, P. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol Invasions 14, 2243–2253 (2012). https://doi.org/10.1007/s10530-012-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0226-9

Keywords

Navigation