Skip to main content
Log in

Alfalfa fields promote high reproductive rate of an invasive predatory lady beetle

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive insect species often may attain high fecundity in agricultural habitats, thereby contributing to their establishment in new geographic regions and their displacement of similar native species. Such may be true for predatory lady beetles (Coleoptera: Coccinellidae) that have been introduced to North America in recent decades, raising concerns of adverse impact on native lady beetles. In northern Utah, Coccinella septempunctata L. first appeared in 1991, and is now predominant among lady beetles especially in alfalfa fields. We assessed the suitability of alfalfa fields as breeding habitat for females of C. septempunctata and the native, similarly sized Coccinella transversoguttata richardsoni Brown. The timing and amount of egg production differed significantly between C. septempunctata and C. transversoguttata as populations of aphids increased through spring and early summer. Reproduction by both species conformed to the egg window hypothesis, with populations of the predators producing most eggs before aphid numbers peaked. But consistently among fields and years, females of C. septempunctata produced more eggs, and did so earlier in the spring, than C. transversoguttata females even at low prey density. Furthermore, C. septempunctata females were more successful than females of C. transversoguttata in approaching their maximum body weights and reproductive output as measured in the laboratory under ideal conditions. The strong reproductive success of C. septempunctata may contribute to its displacement of C. transversoguttata in irrigated alfalfa in the generally arid Intermountain West of North America and to its establishment as an abundant species in this region of North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  • Barron A, Wilson K (1998) Overwintering in the seven spot ladybird, Coccinella septempunctata (Coleoptera: Coccinellidae). Eur J Entomol 95:639–642

    Google Scholar 

  • Boivin T, Rouault G, Chalon A, Candau J-N (2008) Differences in life history strategies between an invasive and a competing resident seed predator. Biol Invasions 10:1013–1025

    Article  Google Scholar 

  • Brown MW (2003) Intraguild responses of aphid predators on apple to the invasion of an exotic species, Harmonia axyridis. Biocontrol 48:141–153

    Article  Google Scholar 

  • Brown MW, Miller SS (1998) Coccinellidae (Coleoptera) in apple orchards of eastern West Virginia and the impact of invasion by Harmonia axyridis. Entomol News 109:143–151

    Google Scholar 

  • Crawley MJ (1986) The population biology of invaders. Phil Trans R Soc Lond B 314:711–731

    Article  Google Scholar 

  • Davidson LN (2008) Diets of ladybird beetles (Coleoptera: Coccinellidae) in Utah alfalfa fields. M.S. Thesis, Utah State University, Logan, UT

  • Dixon AFG (1997) Patch quality and fitness in predatory ladybirds: ecological studies. Ecol Stud 130:205–233

    Google Scholar 

  • Dixon AFG (2000) Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Duelli P, Studer M, Marchand I, Jakob S (1990) Population movements of arthropods between natural and cultivated areas. Biol Conserv 54:193–207

    Article  Google Scholar 

  • Elliott NC, Kieckhefer R, Kauffmann W (1996) Effects of an invading coccinellid on native coccinellids in an agricultural landscape. Oecologia 105:537–544

    Article  Google Scholar 

  • Evans EW (1991) Intra- versus interspecific interactions of ladybeetles (Coleoptera: Coccinellidae) attacking aphids. Oecologia 87:401–408

    Article  Google Scholar 

  • Evans EW (2000) Morphology of invasion: body size patterns associated with establishment of Coccinella septempunctata in western North America. Eur J Entomol 97:469–474

    Google Scholar 

  • Evans EW (2004) Habitat displacement of North American ladybirds by an introduced species. Ecology 85:637–647

    Article  Google Scholar 

  • Evans EW, England S (1996) Indirect interactions in biological control of insects: pests and natural enemies of alfalfa. Ecol Appl 6:920–930

    Article  Google Scholar 

  • Evans FC, Lanham UN (1960) Distortion of the pyramid of numbers in a grassland insect community. Science 131:1531–1532

    Article  CAS  PubMed  Google Scholar 

  • Evans EW, Swallow JG (1993) Numerical responses of natural enemies to artificial honeydew in Utah alfalfa. Environ Entomol 22:1392–1401

    Google Scholar 

  • Evans EW, Toler TR (2007) Aggregation of polyphagous predators in response to multiple prey: ladybirds (Coleoptera: Coccinellidae) foraging in alfalfa. Popul Ecol 49:29–36

    Article  Google Scholar 

  • Hagen KS (1987) Nutritional ecology of terrestrial insect predators. In: Slansky F, Rodriquez JG (eds) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York, pp 533–577

    Google Scholar 

  • Hemptinne J-L, Dixon AFG, Coffin J (1992) Attack strategy of ladybird beetles (Coccinellidae): factors shaping their numerical response. Oecologia 90:238–245

    Google Scholar 

  • Henneman ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316

    Article  CAS  PubMed  Google Scholar 

  • Hesler LS, Kieckhefer RW (2008) Status of exotic and previously common native coccinellids (Coleoptera) in South Dakota landscapes. J Kans Entomol Soc 81:29–49

    Article  Google Scholar 

  • Hironori Y, Katsuhiro S (1997) Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field. Entomophaga 42:153–163

    Article  Google Scholar 

  • Hodek I, Honěk A (1996) Ecology of Coccinellidae. Kluwer, Dordrecht

    Google Scholar 

  • Hodek I, Michaud JP (2008) Why is Coccinella septempunctata so successful? (A point of view). Eur J Entomol 105:1–12

    Google Scholar 

  • Hogmire HW, Brown MW, Schmitt JJ, Winfield TM (1992) Population development and insecticide susceptibility of apple aphid and spirea aphid (Homoptera, Aphididae) on apple. J Entomol Sci 27:113–119

    Google Scholar 

  • Holt RD, Hochberg ME (2001) Indirect interactions, community modules and biological control: a theoretical perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Publishing, New York

    Google Scholar 

  • Honěk A (1982) Factors which determine the composition of field communities of adult aphidophagous Coccinellidae (Coleoptera). Z Angew Entomol 94:157–168

    Google Scholar 

  • Honěk A (1985) Habitat preferences of aphidophagous coccinellids [Coleoptera]. Entomophaga 30:253–264

    Article  Google Scholar 

  • Honĕk A, Dixon AFG, Martinkova Z (2008) Body size, reproductive allocation, and maximum reproductive rate of two species of aphidophagous Coccinellidae exploiting the same resource. Entomol Exp Appl 127:1–9

    Article  Google Scholar 

  • Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509

    Article  Google Scholar 

  • Kajita Y (2008) Reproductive tactics of aphidophagous lady beetles: comparison of a native species and an invasive species that is displacing it. Ph.D. dissertation. Utah State University, Logan, UT

  • Kajita Y, Evans EW (2009) Ovarian dynamics and oosorption in two species of predatory lady beetles (Coleoptera: Coccinellidae). Physiol Entomol 34:185–194

    Article  Google Scholar 

  • Kajita Y, Takano F, Yasuda H, Agarwala BK (2000) Effects of indigenous ladybird species (Coleoptera: Coccinellidae) on the survival of an exotic species in relation to prey abundance. Appl Entomol Zool 35:473–479

    Article  Google Scholar 

  • Kajita Y, Takano F, Yasuda H, Evans EW (2006) Interactions between introduced and native predatory ladybirds (Coleoptera: Coccinellidae): factors influencing the success of species introductions. Ecol Entomol 311:58–67

    Article  Google Scholar 

  • Kindlmann P, Dixon AFG (1993) Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. Eur J Entomol 90:443–450

    Google Scholar 

  • Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects—the Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396

    Article  CAS  PubMed  Google Scholar 

  • McKone MJ, McLauchlan KK, Lebrun EG, McCall AC (2001) An edge effect caused by adult corn-rootworm beetles on sunflowers in tallgrass prairie remnants. Conserv Biol 15:1315–1324

    Article  Google Scholar 

  • Obrycki JJ, Tauber MJ (1981) Phenology of three coccinellid species: thermal requirements for development. Ann Entomol Soc Am 74:31–36

    Google Scholar 

  • Obrycki JJ, Giles KL, Ormord AM (1998a) Interactions between an introduced and indigenous coccinellid species at different prey densities. Oecologia 117:279–285

    Article  Google Scholar 

  • Obrycki JJ, Giles KL, Ormord AM (1998b) Experimental assessment of interactions between larval Coleomegilla maculate and Coccinella septempunctata (Coleoptera: Coccinellidae) in field cages. Environ Entomol 27:1280–1288

    Google Scholar 

  • Osawa N (2000) Population field studies on the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae): resource tracking and population characteristics. Popul Ecol 42:115–127

    Article  Google Scholar 

  • Pemberton RW, Vandenberg NJ (1993) Extrafloral nectar feeding by ladybird beetles (Coleoptera: Coccinellidae). Proc Entomol Soc Wash 95:139–151

    Google Scholar 

  • Phoofolo MW, Obrycki JJ, Krafsur ES (1998) Temperature-dependent ovarian development in Coccinella septempunctata (Coleoptera: Coccinellidae). Ann Entomol Soc Am 88:72–79

    Google Scholar 

  • Rand TA, Louda SM (2006) Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv Biol 20:1720–1729

    Article  PubMed  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    Article  PubMed  Google Scholar 

  • Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Richards DR, Evans EW (1998) Reproductive responses of aphidophagous lady beetles (Coleoptera: Coccinellidae) to non-aphid diets: an example from alfalfa. Ann Entomol Soc Am 91:632–640

    Google Scholar 

  • SAS Institute (2002) SAS 9.1. SAS Institute Inc., Cary

    Google Scholar 

  • Sheppard SK, Henneman ML, Memmott J, Symondson WOC (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Mol Ecol 13:2077–2088

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974

    Article  Google Scholar 

  • Snyder WE, Clevenger GM, Eigenbrode SD (2004) Intraguild predation and successful invasion by introduced ladybird beetles. Oecologia 140:559–565

    Article  PubMed  Google Scholar 

  • Turnock WJ, Wise IL, Matheson FO (2003) Abundance of some native coccinellines (Coleoptera: Coccinellidae) before and after the appearance of Coccinella septempunctata. Can Entomol 135:391–404

    Article  Google Scholar 

  • Yasuda H, Evans EW, Kajita Y, Urakawa K, Takizawa T (2004) Asymmetric larval interactions between introduced and indigenous ladybirds in North America. Oecologia 141:722–731

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank N. Davidson, M. Anderson, J.-S. Lee, N. Pitigala, B. Lowry, V. Weerasekera, S. Davidson, A. Jones, B. Hadfield, B. Hammond, and R. Capener for assisting in the field and lab; D. Knudsen of the Utah Agricultural Experiment Station (USU) for accommodating our use of alfalfa fields; and D. Alston, F. Messina, T. Pitts-Singer, R. Schmidt, and two anonymous reviewers and the editor, Dr. Simberloff, for their very helpful comments on the manuscript. This research was supported by the Utah Agricultural Experiment Station, and the Ecology Center, Utah State University, and complied with the current laws of the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukie Kajita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajita, Y., Evans, E.W. Alfalfa fields promote high reproductive rate of an invasive predatory lady beetle. Biol Invasions 12, 2293–2302 (2010). https://doi.org/10.1007/s10530-009-9644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-009-9644-8

Keywords

Navigation