Skip to main content

Advertisement

Log in

Cognitive Traits Link to Human Chromosomal Regions

  • Published:
Behavior Genetics Aims and scope Submit manuscript

 

Human cognition in normal and disease states is both environmentally and genetically mediated. Except for measures of language-specific abilities, however, few cognitive measures have been associated with specific genes or chromosomal regions. We performed genome-wide linkage analysis of five neuropsychological tests in the Collaborative Study on Genetics of Alcoholism sample. The sample included 1579 individuals (53% female, 76% White Non-Hispanic) in 217 families. There were 390 markers with mean intermarker distance of 9.6 cM. Performance on the Digit Symbol Substitution Test, a component of the Wechsler Adult Intelligence Scale-R, showed significant linkage to 14q11.2 and suggestive linkage to 14q24.2. This test of sustained visual attention also involves visual-motor coordination and executive functions. Performance on the WAIS-R Digit Span Test of immediate memory and mental flexibility showed suggestive linkage to 11q25. Although the validity of these results beyond populations with a susceptibility for alcohol dependence is unclear, these results are among the first linkage results for non-language components of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Abecasis G.R., Cherny S.S., Cookson W.O., Cardon L.R. (2002). Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30(1):97–101

    Article  PubMed  CAS  Google Scholar 

  • Almasy L., Blangero J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62(5):1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Bates M, Convit A. (1999). Neuropsychology and neuroimaging of alcohol and illicit drug abuse. In: Calev A. (ed.). The Assessment of Neuropsychological Functions in Psychiatric Disorders. American Psychiatric Press, Washington, DC, pp. 373–445

    Google Scholar 

  • Begleiter H., Reich T., Hesselbrock V., Porjesz B., Li T.-K., Schuckit M.A., Edenberg H.J. (1995). The collaborative study on the genetics of alcoholism. Alcohol Health Res. World 19:228–236

    Google Scholar 

  • Bierut L.J., Rice J.P., Goate A., Hinrichs A.L., Saccone N.L., Foroud T., Edenberg H.J., Cloninger C.R., Begleiter H., Conneally P.M., Crowe R.R., Hesselbrock V., Li T.K., Nurnberger Jr. J. I., Porjesz B., Schuckit M.A., Reich T. (2004). A genomic scan for habitual smoking in families of alcoholics: common and specific genetic factors in substance dependence. Am. J. Med. Genet. 124A:19–27

    Article  PubMed  Google Scholar 

  • Block J.B., (1968). Hereditary components in the performance of twins on the WAIS. In: Vandenberg S. (ed.). Progress in Human Behavior Genetics. John Hopkins University Press, Baltimore MD

    Google Scholar 

  • Boehnke M. (1991). Allele frequency estimation from data on relatives. Am. J. Hum. Genet. 48(1):22–25

    PubMed  CAS  Google Scholar 

  • Egan M.F., Goldberg T.E., Kolachana B.S., Callicott J.H., Mazzanti C.M., Straub R.E., Goldman D., Weinberger D.R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 98(12):6917–6922

    Article  PubMed  CAS  Google Scholar 

  • Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., Lu B., Weinberger D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269

    Article  PubMed  CAS  Google Scholar 

  • Feskens E.J.M., Havekes L.M., Kalmijn S., Knijff P.D., Launer L.J., Kromhout D. (1994). Apolipoprotein E4 allele and cognitive decline in elderly men. Br. Med. J. 309:1202–1206

    CAS  Google Scholar 

  • Foroud T., Edenberg H.J., Goate A., Rice J., Flury L., Koller D.L., Bierut L.J., Conneally P.M., Nurnberger J.I., Bucholz K.K., Li T.K., Hesselbrock V., Crowe R., Schuckit M., Porjesz B., Begleiter H., Reich T. (2000). Alcoholism susceptibility loci: Confirmation studies in a replicate sample and further mapping. Alcohol. Clin. Exp. Res. 24:933–945

    Article  PubMed  CAS  Google Scholar 

  • Goldberg T.E., Weinberger D.R. (2004). Genes and the parsing of cognitive processes. Trends Cogn. Sci. 8(7):325–335

    Article  PubMed  Google Scholar 

  • Goldman-Rakic P.S. (1987). Development of cortical circuitry and cognitive function. Child Dev. 58:601–622

    Article  PubMed  CAS  Google Scholar 

  • Green P., Falls K., Crooks S. (1990). Documentation for CRIMAP, version 2.4. Washington University School of Medicine, St. Louis, MO

    Google Scholar 

  • Gregoire J., Van der Linden M., (1997). Effects of age on forward and backward digit spans. Aging Neuropsychol. Cogn. 4:140–149

    Article  Google Scholar 

  • Heaton R., Grant I., Matthews C. (1992). HRB Norms Program. Psychological Assessment Resources, Inc, Lutz, Florida

    Google Scholar 

  • Hester R.L., Kinsella G.J., Ong B. (2004). Effect of age on forward and backward span tasks. J. Int. Neuropsychol. Soc. 10:475–481

    Article  PubMed  Google Scholar 

  • Horn J.L., Cattell R.B. (1966). Refinement and test of theory of fluid and crystallized general intelligences. J. Educ. Psychol. 57(5):253–270

    Article  PubMed  CAS  Google Scholar 

  • Kaplan H.I., Sadock B.J. (1995). Comprehensive Textbook of Psychiatry/VI. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Kruglyak L., Daly M.J., Reeve-Daly M.P., Lander E.S. (1996). Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58(6):1347–1363

    PubMed  CAS  Google Scholar 

  • Kruglyak L., Lander E.S. (1998). Faster multipoint linkage analysis using Fourier transforms. J. Comput. Biol. 5(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Langley K., Marshall L., van den Bree M., Thomas H., Owen M., O’Donovan M., Thapar A. (2004). Association of the dopamine D4 receptor gene 6-repeat allele with neuropsychological test performance of children with ADHD. Am. J. Psychiatry 161:133–138

    Article  PubMed  Google Scholar 

  • Lezak M.D. (1995). Neuropsychological Assessment. Oxford University Press, New York

    Google Scholar 

  • Merritt H.H., Rowland L.P. (2000). Merritt’s Textbook of Neurology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Missler M., Zhang W., Rohlmann A., Kattenstroth G., Hammer R.E., Gottmann K., Sudhof T.C. (2003). Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423(6943):939–948

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay N., Almasy L., Schroeder M., Mulvihill W.P., Weeks D.E. (1999). Mega2, a data-handling program for facilitating genetic linkage and association analyses. Am. J. Hum. Genet. 65:A436

    Google Scholar 

  • Parkin A.J., Lawrence A. (1994). A dissociation in the relation between memory tasks and frontal lobe tests in the normal elderly. Neuropsychologia, 32:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Payton A., Holland F., Diggle P., Rabbitt P., Horan M., Davidson Y., Gibbons L., Worthington J., Ollier W.E., Pendleton N. (2003). Cathepsin D exon 2 polymorphism associated with general intelligence in a healthy older population. Mol. Psychiatry 8(1):14–18

    Article  PubMed  CAS  Google Scholar 

  • Plomin R., Hill L., Craig I.W., McGuffin P., Purcell S., Sham P., Lubinski D., Thompson L.A., Fisher P.J., Turic D., Owen M. J. (2001). A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behav. Genet. 31(6):497–509

    Article  PubMed  CAS  Google Scholar 

  • Plomin R., Spinath F.M. (2004). Intelligence: genetics, genes, and genomics. J. Pers. Soc. Psychol. 86(1):112–129

    Article  PubMed  Google Scholar 

  • Reich T., Edenberg H.J., Goate A., Williams J.T., Rice J.P., Van Eerdewegh P., Foroud T., Hesselbrock V., Schuckit M.A., Bucholz K., Porjesz B., Li T.K., Conneally P.M., Nurnberger Jr. J.I., Tischfield J.A., Crowe R.R., Cloninger C.R., Wu W., Shears S., Carr K., Crose C., Willig C., Begleiter H. (1998). Genome-wide search for genes affecting the risk for alcohol dependence. Am. J. Med. Genet. 81:207–215

    Article  PubMed  CAS  Google Scholar 

  • Reitan R.M., Wolfson D. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Neuropsychology Press, Tucson, AZ

    Google Scholar 

  • Rijsdijk F.V., Vernon P.A., Boomsma D.I. (2002). Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study. Behav. Genet. 32:199–210

    Article  PubMed  Google Scholar 

  • Robbins T.W. (1998). Dissociating executive functions of the prefrontal cortex. In: Roberts A.C., Robbins T.W., Weiskrantz L., (eds). The Prefrontal Cortex: Executive and Cognitive Functions. Oxford University Press, New York

    Google Scholar 

  • Royall D.R., Lauterbach E.C., Cummings J.L., Reeve A., Rummans T.A., Kaufer D.I., LaFrance W.C., Jr., Coffey C.E. (2002). Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J. Neuropsychiatry Clin. Neurosci. 14(4):377–405

    PubMed  Google Scholar 

  • Sham P.C., Purcell S., Cherny S.S., Abecasis G.R. (2002). Powerful regression-based quantitative-trait linkage analysis of general pedigrees. Am. J. Hum. Genet. 71: 238–253

    Article  PubMed  CAS  Google Scholar 

  • Spreen O., Strauss E. (1998). A Compendium of Neuropsychological Tests: Administration, Norms and Commentary. Oxford University Press, New York

    Google Scholar 

  • Stromswold K. (2001). The heritability of language: a review and meta-analysis of twin, adoption, and linkage studies. Language 77:647–723

    Article  Google Scholar 

  • Stuss D.T., Shallice T., Alexander M.P. (1995). A multidisciplinary approach to anterior attentional functions. Ann. N. Y. Acad. Sci. 769:191–211

    Article  PubMed  CAS  Google Scholar 

  • Tambs K., Sundet J.M., Magnus P. (1984). Heritability analysis of the WAIS: a study of twins. Intelligence 8:283–293

    Article  Google Scholar 

  • Wechsler D. (1981). WAIS-R Manual. The Psychological Corporation, New York

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Chunsheng He and Xiangyang Kong for computational assistance, William G. Johnson for background information, and Ann Jurecic for editorial assistance. Data were provided by the Collaborative Study on the Genetics of Alcoholism (U10AA008401). This work was supported by grants from the National Institute on Alcohol Abuse and Alcoholism (S.B., M.E.B., J.A.T., P.M.) and the National Institute of Mental Health (S.B., N.G., T.C.M., and J.A.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Buyske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buyske, S., Bates, M.E., Gharani, N. et al. Cognitive Traits Link to Human Chromosomal Regions. Behav Genet 36, 65–76 (2006). https://doi.org/10.1007/s10519-005-9008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9008-9

Keywords

Navigation