Skip to main content
Log in

Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

In a 210d experiment, the potential of biofloc technology (BFT) was evaluated for Farfantepenaeus duorarum. Water quality parameters, microorganisms profile and proximate analysis of biofloc were also assessed. BFT did not improve the growth performance in F. duorarum when compared to conventional clear-water water exchange system (final weight and survival of 13.3 g and 63.2 %; and 13.9 g and 81.4 %, respectively). Microorganism assessment suggested a higher presence of filamentous cyanobacteria followed by protozoa, nematodes and copepods. Proximate analysis of biofloc showed crude protein and crude lipid means levels of 25 and 0.6 %, respectively, and these values varied during the experiment. F. duorarum seemed to be susceptible to high stocking density and high levels of suspended solids (>15 mL L−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AOAC (2000) Official methods of analysis, 16th edn. AOAC International, Washington

    Google Scholar 

  • Arnold SJ, Sellars MJ, Crocos PJ, Coman GJ (2005) Response of juvenile brown tiger shrimp (Penaeus esculentus) to intensive culture conditions in a flow through tank system with three-dimensional artificial substrate. Aquaculture 246:231–238

    Article  Google Scholar 

  • Arnold SJ, Coman FE, Jackson CJ, Groves SA (2009) High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density. Aquaculture 293:42–48

    Article  Google Scholar 

  • Arreguin-Sanchez F, Zetina-Rejón M, Ramírez-Rodríguez M (2008) Exploring ecosystem-based harvesting strategies to recover the collapsed pink shrimp (Farfantepenaeus duorarum) fishery in the southern Gulf of Mexico. Ecol Model 214:83–94

    Article  Google Scholar 

  • Arreguín-Sánchez F, Schultz-Ruíz LE, Gracia A, Sánchez JA, Alarcón T (1997) Las pesquerías de camarón de altamar, explotación, dinámica y evaluación. In: Flores-Hernández D, Sánchez-Gil P, Seijo JC, Arreguín-Sánchez F (eds) Análisis y diagnóstico de los recursos pesqueros críticos del Golfo de México, EPOMEX Serie Científico 7. Universidad. Autónoma de Campeche, Campeche, pp 145–172

    Google Scholar 

  • Asaduzzaman M, Wahab MA, Verdegem MCJ, Huque S, Salam MA, Azim ME (2008) C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture 280:117–123

    Article  CAS  Google Scholar 

  • Avnimelech Y (1999) Carbon and nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235

    Article  CAS  Google Scholar 

  • Avnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture 264:140–147

    Article  Google Scholar 

  • Avnimelech Y (2012) Biofloc technology, a practical guide book (2nd ed.). The world. Aquaculture Society, Baton Rouge, Louisiana, EUA

  • Avnimelech Y, Kochva M, Diab S (1994) Development of controlled intensive aquaculture systems with limited water exchange and adjusted carbon to nitrogen ratio. Bamdigeh 46:119–131

    Google Scholar 

  • Azim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29–35

    Article  CAS  Google Scholar 

  • Ballester ELC, Wasielesky W Jr, Cavalli RO, Abreu PC (2007) Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture 265:355–362

    Article  Google Scholar 

  • Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, Abreu L, Wasielesky W (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nut 16:163–172

    Article  CAS  Google Scholar 

  • Barnes RD (1963) Invertebrate zoology. W. B. Saunders, London

    Google Scholar 

  • Bombeo-Tuburan I, Guanzon NG Jr, Schroeder GL (1993) Production of Penaeus monodon (Fabricius) using four natural food types in an extensive system. Aquaculture 112:57–65

    Article  Google Scholar 

  • Burford MA, Thompson PJ, Bauman RH, Pearson DC (2003) Nutrient and microbial dynamics in high-intensive, zero-exchange shrimp ponds in Belize. Aquaculture 219:393–411

    Article  Google Scholar 

  • Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC (2004) The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture 232:525–537

    Article  Google Scholar 

  • Case M, Leca EE, Leitao SN, Sant’Anna EE, Schwamborn R, de Moraes AT Jr (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352

    Article  PubMed  CAS  Google Scholar 

  • Coyle SD, Bright LA, Wood DR, Neal RS, Tidwell JH (2011) Performance of Pacific White Shrimp, Litopenaeus vannamei, reared in zero-exchange tank systems exposed to different light sources and intensities. J World Aquac Soc 42:687–695

    Article  Google Scholar 

  • Crab R, Kochva M, Verstraete W, Avnimelech Y (2009) Bio-flocs technology application in over-wintering of tilapia. Aquac Eng 40:105–112

    Article  Google Scholar 

  • Crab R, Chielens B, Wille M, Bossier P, Verstraete W (2010) The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res 41:559–567

    Article  CAS  Google Scholar 

  • Cripe G (1994) Induction of maturation and spawning of pink shrimp, Penaeus duorarum, by changing water temperature, and survival and growth of young. Aquaculture 128:255–260

    Article  Google Scholar 

  • Decamp O, Moss S, Nagano N (2001) Live protozoa: suitable live food for larval fish and shrimp? Glob Advocate 4:28–29

    Google Scholar 

  • Decamp O, Cody J, Conquest L, Delanoy G, Tacon AGJ (2003) Effect of salinity on natural community and production of Litopenaeus vannamei (Boone) within experimental zero-water exchange culture systems. Aquac Res 34:345–355

    Article  Google Scholar 

  • Ekasari J, Crab R, Verstraete W (2010) Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. HAYATI J Biosci 17:125–130

    Article  Google Scholar 

  • Emerenciano MGC, Wasielesky W, Soares RB, Ballester EC, Cavalli RO, Izeppi EM (2007) Crescimento e sobrevivêcia do camarão-rosa Farfantepenaeus paulensis na fase de berçário em meio heterotrófico. Acta Sci Biol Sci 29:1–7

    Google Scholar 

  • Emerenciano M, Vinatea L, Gálvez AO, Shuler A, Stokes A, Venero J, Haveman J, Richardson J, Thomas B, Leffler J (2009) Effect of two different diets fish meal based and “organic” plant based diets in Litopenaeus setiferus earlier postlarvae culture under bio-floc, green-water and clear-water conditions. CD of abstracts World Aquaculture Society Meeting 2009, Veracruz, Mexico

  • Emerenciano M, Cuzon G, Goguenheim J, Gaxiola G, Aquacop (2011a) Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquaculture Research (published online first doi:10.1111/j.1365-2109.2011.03012.x)

  • Emerenciano M, Ballester ELC, Cavalli RO, Wasielesky W (2011b) Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquac Int 19:891–901

    Article  Google Scholar 

  • Emerenciano M, Ballester ELC, Cavalli RO, Wasielesky W (2012) Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res 43:447–457

    Article  CAS  Google Scholar 

  • Esteves FA (1998) Fundamentos de limnologia, 2nd edn. Interciência, Rio de Janeiro

    Google Scholar 

  • Gamboa-Delgado J, Molina-Poveda C, Cahu C (2003) Digestive enzyme activity and food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of body weight. Aquac Res 34:1403–1411

    Article  CAS  Google Scholar 

  • Goyard E, Patrois J, Peignon J, Vanaa V, Dufour R, Viallon J, Bedier E (2002) Selection for better growth of Penaeus stylirostris in Tahiti and New Caledonia. Aquaculture 204:461–468

    Article  Google Scholar 

  • Gracia A (1995) Impact of artisanal fishery on production of the pink shrimp Penaeus Farfantepenaeus duorarum Burkenroad, 1939. Ciencias Marinas 21:343–359

    Google Scholar 

  • Gracia A (1997) Pesquería artesanal de camarón. In: Flores-Hernández D, Sánchez-Gil P, Seijo JC, Arreguín-Sánchez F (eds) Análisis y diagnóstico de los recursos pesqueros críticos del Golfo de México, EPOMEX, Serie Científico 7. Universidad. Autónoma de Campeche, Campeche, pp 173–184

    Google Scholar 

  • Gullian M, Aramburu C, Sanders B, Lope R (2010) Viability of culturing pink shrimp Farfantepenaeus duorarum in low-salinity groundwater from the Yucatán Peninsula (SE, México). Aquaculture 302:202–207

    Article  Google Scholar 

  • Hargreaves JÁ (2006) Photosynthetic suspended-growth systems in aquaculture. Aquac Eng 34:344–363

    Article  Google Scholar 

  • Izquierdo M, Forster I, Divakaran S, Conquest L, Decamp O, Tacon A (2006) Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquac Nut 12:192–202

    Article  CAS  Google Scholar 

  • Jory DE (2001) Feed management practices for a healthy pond environment. In: The new wave, proceedings of the special session on sustainable shrimp culture (ed. by Browdy CL, Jory DE), Aquaculture 2001. The World Aquaculture Society, Baton Rouge, USA, pp 118–143

  • Ju ZY, Forster I, Conquest L, Dominy W, Kuo WC, Horgen FD (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39:118–133

    Article  CAS  Google Scholar 

  • Kirchman DL (2008) Microbial ecology of the oceans, 2nd edn. Wiley-Liss, NY

    Book  Google Scholar 

  • Krummenauer D, Peixoto S, Cavalli RO, Poersch LH, Wasielesky W (2011) Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern brazil at different stocking densities. J World Aquac Soc 42:726–733

    Article  Google Scholar 

  • López-Téllez N, Hernández-Rodríguez J, Ramírez-Ligonio H, Seca-Escalante J (2000) Crecimiento del camarón rosado Farfantepenaeus duorarum en estanques rústicos. Ciencia Pesquera 14:29–32

    Google Scholar 

  • Maicá PF, Borba MR, Wasielesky W (2012) Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquac Res 43:361–370

    Article  Google Scholar 

  • McIntosh D, Samocha TM, Jones ER, Lawrence AL, McKee DA, Horowitz S, Horowitz A (2000) The effect of a bacterial supplement on the high-density culturing of Litopenaeus vannamei with low-protein diet in outdoor tank system and no water exchange. Aquac Eng 21:215–227

    Article  Google Scholar 

  • Moss KRK, Moss SM (2004) Effects of artificial substrate and stocking density on the nursery production of pacific white shrimp Litopenaeus vannamei. J World Aquac Soc 35:537–542

    Article  Google Scholar 

  • Muangkeow B, Ikejima K, Powtongsook S, Gallardo W (2011) Growth and nutrient conversion of white shrimp Litopenaeus vannamei (Boone) and Nile tilapia Oreochromis niloticus L. in an integrated closed recirculating system. Aquac Res 42:1246–1260

    Article  Google Scholar 

  • Nagano N, Decamp O (2004) Ingestion of a ciliated protozoa by first-feeding larval stage of pacific white shrimp Litopenaeus vannamei (Boone). Aquac Res 35:516–518

    Article  Google Scholar 

  • Pedrós-Alió C, Calderon-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) Themicrobial food web along salinity gradients. Microb Ecol 32:143–155

    Google Scholar 

  • Peixoto S, Wasielesky W, Cavalli RO (2011) Broodstock maturation and reproduction of the indigenous pink shrimp Farfantepenaeus paulensis in Brazil: an updated review on research and development. Aquaculture 315:9–15

    Article  Google Scholar 

  • Penn JW (1981) The behavior and catchability of some commercially exploited penaeids and relationship to stock and recruitment. In: Penaeid shrimp—their biology and Management (ed. by Gulland and Rothschild), pp 173–186, Fishing News Books Ltd., Farnham

  • Pérez-Farfante I (1969) Western Atlantic shrimps of the genus Penaeus. Fish Bull 67:461–591

    Google Scholar 

  • Pomeroy LR, Wiebe WJ (1988) Energetics of microbial food webs. Hydrobiologia 159:7–18

    Article  Google Scholar 

  • Rajkumar M, Kumaraguru-Vasagam KP (2006) Suitability of the copepod, Acartia clausi as a live feed for seabass larvae (Lates calcarifer Bloch): compared to traditional live-food organisms with special emphasis on the nutritional value. Aquaculture 261:649–658

    Article  Google Scholar 

  • Ray AJ, Seaborn G, Leffler JW, Wilde SB, Lawson A, Browdy CL (2010a) Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 310:130–138

    Article  Google Scholar 

  • Ray AJ, Lewis BL, Browdy CL, Leffler JW (2010b) Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture 299:89–98

    Article  Google Scholar 

  • Samocha TM, Patnaik S, Speed M, Ali AM, Burger JM, Almeida RV, Ayub Z, Harisanto M, Horowitz A, Brock DL (2007) Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquac Eng 36:184–191

    Article  Google Scholar 

  • Samocha TM, Gandy RL, Morris TC, Patnaik S, Kim JS, Davis AD, Richardson JR, Browdy CL (2008). Development of viral pathogen free broodstock populations of the Atlantic pink shrimp Farfantepenaeus duorarum and the Atlantic white shrimp Litopenaeus setiferus. Abstract of Aquaculture America 2008, pp 399, World Aquaculture Society Meeting, Florida, USA

  • Smith LL, Beidenbach JM, Lawrence AL (1992). Penaeid larviculture: Galveston method. In: Marine Shrimp Culture: Principles and Practices (ed. by Fast A.W. & Lester J.L.), pp. 171–191, Elsevier Science Publishers, Amsterdam, the Netherlands

  • Soares R, Peixoto S, Bemvenuti C, Wasielesky W, D’Incao F, Murcia N, Suita S (2004) Composition and abundance of invertebrate benthic fauna in Farfantepenaeus paulensis culture pens (Patos Lagoon estuary, Southern Brazil). Aquaculture 239:199–215

    Article  Google Scholar 

  • Sokal R, Rohlf J (1995) Biometry, the principles and practice of statistics in biological research. WH Freeman, New York

    Google Scholar 

  • Suita SM (2009) O uso da dextrose como fonte de carbono no desenvolvimento de bio-flocos e desempenho do camarão-branco (Litopenaeus vannamei) cultivado em sistema sem renovação de água. Dissertação de mestrado, Universidade Federal do Rio Grande, 44p

  • Tacon AGJ (1990) Standard methods for the nutrition and feeding of farmed fish and shrimp. Argent Laboratories Press, Washington

    Google Scholar 

  • Taw N (2010) Biofloc technology expanding at white shrimp farms. Global Advocate may/june, 24–26 (available in http://www.gaalliance.org/mag/May_June2010.pdf)

  • Thompson FL, Abreu PC, Cavalli RO (1999) The use of microorganisms for water quality and nourishment in intensive shrimp culture. Aquaculture 203:263–278

    Article  Google Scholar 

  • Thompson FL, Abreu PC, Wasielesky W (2002) Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture 203:263–278

    Article  Google Scholar 

  • Van Wyk P, Scarpa J (1999) Water quality requirements and management. In: Van Wyck P (ed) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Tallahasee, pp 128–138

    Google Scholar 

  • Vinatea L, Gálvez AO, Browdy CL, Stokes A, Venero J, Haveman J, Lewis BL, Lawson A, Shuler A, Leffler JW (2010) Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquac Eng 42:17–24

    Article  Google Scholar 

  • Wasielesky W Jr, Atwood H, Stokes A, Browdy CL (2006) Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258:396–403

    Article  Google Scholar 

  • Wickins JF (1976) The tolerance of warm-water prawns to recirculated water. Aquaculture 9:19–37

    Article  CAS  Google Scholar 

  • Wimpenny RS (1966) The plankton of the sea. Faber and Fabe, London

    Google Scholar 

  • Yusoff FM, Zubaidah MS, Matias HB, Kwan TS (2002) Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res 33:269–278

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Brazilian Ministry of Education (PhD grant number 4814061 provided to the primary author) and Consejo Nacional de Ciencia y Tecnología-CONACyT, México (grant 60824) for research support. The authors also would like to thank Miguel Arévalo, Moisés Cab, Rudy Canche, Patricia Uc, Gabriela Palomino, Concepción Burgos, Manuel Valenzuela and all staff of Programa Camarón-UMDI for their contribution in this study. Thanks are also to anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício Emerenciano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerenciano, M., Cuzon, G., Paredes, A. et al. Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquacult Int 21, 1381–1394 (2013). https://doi.org/10.1007/s10499-013-9640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-013-9640-y

Keywords

Navigation