Skip to main content
Log in

Learning dynamic algorithm portfolios

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Algorithm selection can be performed using a model of runtime distribution, learned during a preliminary training phase. There is a trade-off between the performance of model-based algorithm selection, and the cost of learning the model. In this paper, we treat this trade-off in the context of bandit problems. We propose a fully dynamic and online algorithm selection technique, with no separate training phase: all candidate algorithms are run in parallel, while a model incrementally learns their runtime distributions. A redundant set of time allocators uses the partially trained model to propose machine time shares for the algorithms. A bandit problem solver mixes the model-based shares with a uniform share, gradually increasing the impact of the best time allocators as the model improves. We present experiments with a set of SAT solvers on a mixed SAT-UNSAT benchmark; and with a set of solvers for the Auction Winner Determination problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino: the adversarial multi-armed bandit problem. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 322–331. IEEE Computer Society Press, Los Alamitos, CA (1995)

    Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for max-sat. ACM J. Exp. Algorithms 2, 2 (1997)

    Article  MathSciNet  Google Scholar 

  4. Beck, C.J., Freuder, E.C.: Simple rules for low-knowledge algorithm selection. In: Régin, J.C., Rueher, M. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, First International Conference, CPAIOR 2004. Lecture Notes in Computer Science, vol. 3011, pp. 50–64. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  5. Beran, R.: Nonparametric regression with randomly censored survival data. Technical report, University of California, Berkeley (1981)

    Google Scholar 

  6. Berry, D.A., Fristedt, B.: Bandit Problems: Sequential Allocation of Experiments. Chapman & Hall, London (1985)

    MATH  Google Scholar 

  7. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W., et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann, San Mateo, CA (2002)

    Google Scholar 

  8. Boddy, M., Dean, T.L.: Deliberation scheduling for problem solving in time-constrained environments. Artif. Intell. 67(2), 245–285 (1994)

    Article  MATH  Google Scholar 

  9. Borrett, J.E., Tsang, E.P.K., Walsh, N.R.: Adaptive constraint satisfaction: The quickest first principle. In: Wahlster, W. (ed.) Proceedings of the 12th European Conference on Artificial Intelligence, pp. 160–164. Wiley, Chichester, UK (1996)

    Google Scholar 

  10. Carchrae, T., Beck, J.C.: Applying machine learning to low knowledge control of optimization algorithms. Comput. Intell. 21(4), 373–387 (2005)

    MathSciNet  Google Scholar 

  11. Cicirello, V.A., Smith, S.F.: Heuristic selection for stochastic search optimization: Modeling solution quality by extreme value theory. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming – CP 2004. Lecture Notes in Computer Science, vol. 3258, pp. 197–211. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  12. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: A new model of exploration applied to search heuristic selection. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pp. 1355–1361 (2005)

  13. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Grefenstette, J. (ed.) Proceedings of an International Conference on Genetic Algorithms and Their Applications, Carnegie-Mellon University, July 24–26, 1985. Lawrence Erlbaum Associates, Hillsdale NJ (1985)

    Google Scholar 

  14. Etzioni, O.: Embedding decision-analytic control in a learning architecture. Artif. Intell. 49(1–3), 129–159 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fürnkranz, J.: On-line bibliography on meta-learning (2001). EU ESPRIT METAL Project (26.357): A Meta-learning Assistant for Providing User Support in Machine Learning Mining. Http://faculty.cs.byu.edu/~cgc/Research/MetalearningBiblio/metal-bib.html

  16. Gagliolo, M., Schmidhuber, J.: Gambling in a computationally expensive casino: Algorithm selection as a bandit problem. NIPS 2006 Workshop on Online Trading of Exploration and Exploitation, Whistler Canada, 8 December 2006

  17. Gagliolo, M., Schmidhuber, J.: A neural network model for inter-problem adaptive online time allocation. In: Duch, W., et al. (eds.) Artificial Neural Networks: Formal Models and Their Applications – Proceedings ICANN 2005. Part 2. Lecture Notes in Computer Science, vol. 3697, pp. 7–12. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  18. Gagliolo, M., Schmidhuber, J.: Dynamic algorithm portfolios. Ninth international symposium on artificial intelligence and mathematics, Fort Lauderdale FL, 4–6 January 2006

  19. Gagliolo, M., Schmidhuber, J.: Impact of censored sampling on the performance of restart strategies. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming – CP 2006. Lecture Notes in Computer Science, vol. 4204, pp. 167–181. Springer, Berlin Heidelberg New York (2006)

    Chapter  Google Scholar 

  20. Gagliolo, M., Schmidhuber, J.: Learning restart strategies. In: IJCAI 2007 – Twentieth International Joint Conference on Artificial Intelligence (2007) (in press)

  21. Gagliolo, M., Zhumatiy, V., Schmidhuber, J.: Adaptive online time allocation to search algorithms. In: Boulicaut, J.F., et al. (eds.) Machine Learning: ECML 2004. Proceedings of the 15th European Conference on Machine Learning, pp. 134–143. Springer, Berlin Heidelberg New York (2004) (Extended tech. report available at http://www.idsia.ch/idsiareport/IDSIA-23-04.ps.gz)

  22. Gent, I., Walsh, T.: The search for satisfaction. Technical report, Department of Computer Science, University of Strathclyde (1999)

  23. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-learning. Mach. Learn. 54(3), 187–193 (2004)

    Article  Google Scholar 

  24. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1-2), 67–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hansen, E.A., Zilberstein, S.: Monitoring and control of anytime algorithms: A dynamic programming approach. Artif. Intell. 126(1–2), 139–157 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Harick, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1867–1875. Morgan Kaufmann, San Mateo, CA (1999)

    Google Scholar 

  28. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  29. Hoos, H.H., Stützle, T.: Local search algorithms for SAT: an empirical evaluation. J. Autom. Reason. 24(4), 421–481 (2000)

    Article  MATH  Google Scholar 

  30. Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: Gent, T.W.I.P., Maaren, H.v. (ed.) SAT 2000, pp. 283–292. IOS Press, Amsterdam, The Netherlands (2000) (http://www.satlib.org)

  31. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A bayesian approach to tackling hard computational problems. In: Breese, J.S., Koller, D. (eds.) UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan Kaufmann, San Mateo, CA (2001)

    Google Scholar 

  32. Horvitz, E.J., Zilberstein, S.: Computational tradeoffs under bounded resources (editorial). Artif. Intell. 126(1–2), 1–4 (2001) (Special Issue)

    Article  Google Scholar 

  33. Huberman, B.A., Lukose, R.M., Hogg, T.: An economic approach to hard computational problems. Science 275, 51–54 (1997)

    Article  Google Scholar 

  34. Hutter, F., Hamadi, Y.: Parameter adjustment based on performance prediction: Towards an instance-aware problem solver. Technical Report. MSR-TR-2005-125, Microsoft Research, Cambridge, UK (2005)

  35. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction and automated tuning of randomized and parametric algorithms. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming – CP 2006. Lecture Notes in Computer Science, vol. 4204, pp. 213–228. Springer, Berlin Heidelberg New York (2006)

    Chapter  Google Scholar 

  36. Ibrahim, J.G., Chen, M.H., Sinha, D.: Bayesian Survival Analysis. Springer, Berlin Heidelberg New York (2001)

    MATH  Google Scholar 

  37. Jr., D.W.H., Lemeshow, S.: Applied Survival Analysis: Regression Modeling of Time to Event Data. Wiley, New York (1999)

    Google Scholar 

  38. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  39. Kaplan, E., Meyer, P.: Nonparametric estimation from incomplete samples. J. Am. Stat. Assoc. 73, 457–481 (1958)

    Article  Google Scholar 

  40. Kautz, H.A., Horvitz, E., Ruan, Y., Gomes, C.P., Selman, B.: Dynamic restart policies. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 674–681 (2002)

  41. Van Keilegom, I., Akritas, M., Veraverbeke, N.: Estimation of the conditional distribution in regression with censored data : a comparative study. Comput. Stat. Data Anal. 35, 487–500 (2001)

    Article  MATH  Google Scholar 

  42. Keller, J., Giraud-Carrier, C.: ECML 2000 workshop on meta-learning: building automatic advice strategies for model selection and method combination. In: Eleventh European Conference on Machine Learning (ECML-2000), 30 May–2 June, Barcelona, Spain (2000)

  43. van der Laan, M.J., Robins, J.M.: Unified Methods for Censored Longitudinal Data and Causality. Springer, Berlin Heidelberg New York (2003)

    MATH  Google Scholar 

  44. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Langley, P. (ed.) Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), pp. 511–518. Morgan Kaufmann, San Mateo, CA (2000)

    Google Scholar 

  45. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimization problems: The case of combinatorial auctions. In: Hentenryck, P.V. (ed.) Principles and Practice of Constraint Programming – CP 2002. Lecture Notes in Computer Science, vol. 2470. Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  46. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology and a case study on combinatorial auctions. J. ACM (submitted)

  47. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 97, vol. 1, pp. 366–371. Morgan Kaufmann, San Mateo, CA (1997)

    Google Scholar 

  48. Li, C.M., Huang, W.: Diversification and determinism in local search for satisfiability. In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing, 8th International Conference, SAT 2005, Lecture Notes in Computer Science, vol. 3569, pp. 158–172. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  49. Li, G., Doss, H.: An approach to nonparametric regression for life history data using local linear fitting. Ann. Stat. 23, 787–823 (1995)

    MATH  MathSciNet  Google Scholar 

  50. Li, H.: Censored data regression in high dimension and low sample size settings for genomic applications. Technical Report no. 9, University of Pennsylvania (2006)

  51. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  52. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems. In: Proceedings 10th National Conf. on Artificial Intelligence, pp. 459–465 (1992)

  53. Moore, A.W., Lee, M.S.: Efficient algorithms for minimizing cross validation error. In: Cohen, W.W., Hirsh, H. (eds.) Proceedings of the Eleventh International Conference (ICML). Machine Learning, pp. 190–198. Morgan Kaufmann, San Mateo, CA (1994)

    Google Scholar 

  54. Nelson, W.: Applied Life Data Analysis. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  55. Nielsen, J., Linton, O.: Kernel estimation in a nonparametric marker dependent hazard model. Ann. Stat. 23, 1735–1748 (1995)

    MATH  MathSciNet  Google Scholar 

  56. Nudelman, E.: Empirical approach to the complexity of hard problems. Ph.D. thesis, Stanford University, CA (2005)

  57. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding random sat: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming – CP 2004. Lecture Notes in Computer Science, vol. 3258, pp. 438–452. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  58. Petrik, M.: Learning parallel portfolios of algorithms. Master’s thesis, Comenius University (2005)

  59. Petrik, M.: Statistically optimal combination of algorithms. SOFSEM 2005 – 31st Annual Conference on Current Trends in Theory and Practice of Informatics, Slovak Republic, 22–28 January, 2005

  60. Petrik, M., Zilberstein, S.: Learning static parallel portfolios of algorithms. Ninth international symposium on artificial intelligence and mathematics, Fort Lauderdale FL, 4–6 January 2006

  61. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: Langley, P. (ed.) Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), pp. 743–750. Morgan Kaufmann, San Mateo, CA (2000)

    Google Scholar 

  62. Pratt, L., Thrun, S.: Guest editors’ introduction. Mach. Learn. 28, 5 (1997) (Special Issue on Inductive Transfer)

    Article  Google Scholar 

  63. Rice, J.R.: The algorithm selection problem. In: Rubinoff, M., Yovits, M.C. (eds.) Advances in Computers, vol. 15, pp. 65–118. Academic, New York (1976)

    Google Scholar 

  64. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58, 527–535 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  65. Russell, S.J., Wefald, E.H.: Principles of metareasoning. Artif. Intell. 49(1–3), 361–395 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  66. Russell, S.J., Zilberstein, S.: Anytime sensing, planning, and action: A practical model for robot control. In: Bajcsy, R. (ed.) Proceedings of the International Conference on Artificial Intelligence (IJCAI-93), Chambéry, France, pp. 1402–1407. Morgan Kaufmann, San Mateo, CA (1993)

    Google Scholar 

  67. Sałustowicz, R.P., Schmidhuber, J.: Probabilistic incremental program evolution. Evol. Comput. 5(2), 123–141 (1997)

    Google Scholar 

  68. Schmidhuber, J.: Optimal ordered problem solver. Mach. Learn. 54, 211–254 (2004) (Short version in NIPS 15, p. 1571–1578, 2003)

    Article  MATH  Google Scholar 

  69. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Mach. Learn. 28, 105–130 (1997) (Based on: Simple principles of metalearning. TR IDSIA-69-96, 1996)

    Article  Google Scholar 

  70. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)

    Article  MATH  Google Scholar 

  71. Solomonoff, R.J.: Progress in incremental machine learning. Technical Report. IDSIA-16-03, IDSIA (2003)

  72. Spierdijk, L.: Nonparametric conditional hazard rate estimation: a local linear approach. Technical Report. TW Memorandum, University of Twente (2005)

  73. Streeter, M.J., Smith, S.F.: An asymptotically optimal algorithm for the max k-armed bandit problem. In: Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI). AAAI Press, Menlo Park, CA (2006)

    Google Scholar 

  74. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  75. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  76. Wang, J.L.: Smoothing hazard rate. In: Armitage, P., et al. (eds.) Encyclopedia of Biostatistics, 2nd Edition, vol. 7, pp. 4986–4997. Wiley, New York (2005)

    Google Scholar 

  77. Wichert, L., Wilke, R.A.: Application of a simple nonparametric conditional quantile function estimator in unemployment duration analysis. Technical Report. ZEW Discussion Paper No. 05-67, Centre for European Economic Research (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Gagliolo.

Additional information

This work was supported by SNF grant 200020-107590/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagliolo, M., Schmidhuber, J. Learning dynamic algorithm portfolios. Ann Math Artif Intell 47, 295–328 (2006). https://doi.org/10.1007/s10472-006-9036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-006-9036-z

Keywords

Mathematics Subject Classifications (2000)

Navigation