Skip to main content

Advertisement

Log in

Pro-angiogenic hematopoietic progenitor cells and endothelial colony-forming cells in pathological angiogenesis of bronchial and pulmonary circulation

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Dysregulation of angiogenesis is a common feature of many disease processes. Vascular remodeling is believed to depend on the participation of endothelial progenitor cells, but the identification of endothelial progenitors in postnatal neovascularization remains elusive. Current understanding posits a role for circulating pro-angiogenic hematopoietic cells that interact with local endothelial cells to establish an environment that favors angiogenesis in physiologic and pathophysiologic responses. In the lung, increased and dysregulated angiogenesis is a hallmark of diseases of the bronchial and pulmonary circulations, manifested by asthma and pulmonary arterial hypertension (PAH), respectively. In asthma, THelper-2 immune cells produce angiogenic factors that mobilize and recruit pro-inflammatory and pro-angiogenic precursors from the bone marrow into the airway wall where they induce angiogenesis and fuel inflammation. In contrast, in PAH, upregulation of hypoxia-inducible factor (HIF) in vascular cells leads to the production of bone marrow-mobilizing factors that recruit pro-angiogenic progenitor cells to the pulmonary circulation where they contribute to angiogenic remodeling of the vessel wall. This review focuses on current knowledge of pro-angiogenic progenitor cells in the pathogenesis of asthma and PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  2. Asosingh K, Erzurum SC (2009) Angioplasticity in asthma. Biochem Soc Trans 37:805–810

    Article  PubMed  CAS  Google Scholar 

  3. Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54:S20–S31

    Article  PubMed  CAS  Google Scholar 

  4. Richardson MR, Yoder MC (2011) Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 50:266–272

    Article  PubMed  CAS  Google Scholar 

  5. Chao H, Hirschi KK (2010) Hemato-vascular origins of endothelial progenitor cells? Microvasc Res 79:169–173

    Article  PubMed  CAS  Google Scholar 

  6. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  7. Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, Heeschen C, Spyridopoulos I, Dimmeler S, Zeiher AM (2007) Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 49:2341–2349

    Article  PubMed  Google Scholar 

  8. Stamm C, Kleine HD, Choi YH, Dunkelmann S, Lauffs JA, Lorenzen B, David A, Liebold A, Nienaber C, Zurakowski D, Freund M, Steinhoff G (2007) Intramyocardial delivery of cd133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 133:717–725

    Article  PubMed  Google Scholar 

  9. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  10. Abdel-Rahman AM, el-Sahrigy SA, Bakr SI (2006) A comparative study of two angiogenic factors: vascular endothelial growth factor and angiogenin in induced sputum from asthmatic children in acute attack. Chest 129:266–271

    Article  PubMed  CAS  Google Scholar 

  11. Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, Van Haute I, Lootens N, Heyndrickx G, Wijns W (2005) Intracoronary injection of cd133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112:I178–I183

    PubMed  Google Scholar 

  12. Babin-Ebell J, Sievers HH, Charitos EI, Klein HM, Jung F, Hellberg AK, Depping R, Sier HA, Marxsen J, Stoelting S, Kraatz EG, Wagner KF (2010) Transmyocardial laser revascularization combined with intramyocardial endothelial progenitor cell transplantation in patients with intractable ischemic heart disease ineligible for conventional revascularization: preliminary results in a highly selected small patient cohort. Thorac Cardiovasc Surg 58:11–16

    Google Scholar 

  13. Sobrino T, Hurtado O, Moro MA, Rodriguez-Yanez M, Castellanos M, Brea D, Moldes O, Blanco M, Arenillas JF, Leira R, Davalos A, Lizasoain I, Castillo J (2007) The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke 38:2759–2764

    Article  PubMed  Google Scholar 

  14. Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, Nagatsuka K, Todo K, Mori K, Stern DM, Soma T, Naritomi H (2004) Circulating cd34-positive cells provide an index of cerebrovascular function. Circulation 109:2972–2975

    Article  PubMed  Google Scholar 

  15. Egan CG, Lavery R, Caporali F, Fondelli C, Laghi-Pasini F, Dotta F, Sorrentino V (2008) Generalised reduction of putative endothelial progenitors and cxcr4-positive peripheral blood cells in type 2 diabetes. Diabetologia 51:1296–1305

    Article  PubMed  CAS  Google Scholar 

  16. Kusuyama T, Omura T, Nishiya D, Enomoto S, Matsumoto R, Takeuchi K, Yoshikawa J, Yoshiyama M (2006) Effects of treatment for diabetes mellitus on circulating vascular progenitor cells. J Pharmacol Sci 102:96–102

    Article  PubMed  CAS  Google Scholar 

  17. Fadini GP, Agostini C, Avogaro A (2005) Endothelial progenitor cells in cerebrovascular disease. Stroke 36:1112–1113 (author reply 1113)

    Article  PubMed  Google Scholar 

  18. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  19. Thill M, Strunnikova NV, Berna MJ, Gordiyenko N, Schmid K, Cousins SW, Thompson DJ, Csaky KG (2008) Late outgrowth endothelial progenitor cells in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 49:2696–2708

    Article  PubMed  Google Scholar 

  20. Sheridan CM, Rice D, Hiscott PS, Wong D, Kent DL (2006) The presence of ac133-positive cells suggests a possible role of endothelial progenitor cells in the formation of choroidal neovascularization. Invest Ophthalmol Vis Sci 47:1642–1645

    Article  PubMed  Google Scholar 

  21. Tomita M, Yamada H, Adachi Y, Cui Y, Yamada E, Higuchi A, Minamino K, Suzuki Y, Matsumura M, Ikehara S (2004) Choroidal neovascularization is provided by bone marrow cells. Stem Cells 22:21–26

    Article  PubMed  Google Scholar 

  22. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4908–4913

    Article  PubMed  Google Scholar 

  23. Palange P, Testa U, Huertas A, Calabro L, Antonucci R, Petrucci E, Pelosi E, Pasquini L, Satta A, Morici G, Vignola MA, Bonsignore MR (2006) Circulating haemopoietic and endothelial progenitor cells are decreased in copd. Eur Respir J 27:529–541

    Article  PubMed  CAS  Google Scholar 

  24. Sala E, Villena C, Balaguer C, Rios A, Fernandez-Palomeque C, Cosio BG, Garcia J, Noguera A, Agusti A (2010) Abnormal levels of circulating endothelial progenitor cells during exacerbations of copd. Lung 188:331–338

    Article  PubMed  Google Scholar 

  25. Huertas A, Testa U, Riccioni R, Petrucci E, Riti V, Savi D, Serra P, Bonsignore MR, Palange P (2010) Bone marrow-derived progenitors are greatly reduced in patients with severe copd and low-bmi. Respir Physiol Neurobiol 170:23–31

    Article  PubMed  CAS  Google Scholar 

  26. Burnham E, Moss M (2006) Progenitor cells in acute lung injury. Minerva Anestesiol 72:369–374

    PubMed  CAS  Google Scholar 

  27. Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M (2005) Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 172:854–860

    Article  PubMed  Google Scholar 

  28. Burke DL, Frid MG, Kunrath CL, Karoor V, Anwar A, Wagner BD, Strassheim D, Stenmark KR (2009) Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol 297:L238–L250

    Article  PubMed  CAS  Google Scholar 

  29. Kahler CM, Wechselberger J, Hilbe W, Gschwendtner A, Colleselli D, Niederegger H, Boneberg EM, Spizzo G, Wendel A, Gunsilius E, Patsch JR, Hamacher J (2007) Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury. Respir Res 8:50

    Article  PubMed  CAS  Google Scholar 

  30. Ishizawa K, Kubo H, Yamada M, Kobayashi S, Numasaki M, Ueda S, Suzuki T, Sasaki H (2004) Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett 556:249–252

    Article  PubMed  CAS  Google Scholar 

  31. Yamada M, Kubo H, Ishizawa K, Kobayashi S, Shinkawa M, Sasaki H (2005) Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 60:410–413

    Article  PubMed  CAS  Google Scholar 

  32. Asosingh K, Aldred MA, Vasanji A, Drazba J, Sharp J, Farver C, Comhair SA, Xu W, Licina L, Huang L, Anand-Apte B, Yoder MC, Tuder RM, Erzurum SC (2008) Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 172:615–627

    Article  PubMed  CAS  Google Scholar 

  33. Asosingh K, Swaidani S, Aronica M, Erzurum SC (2007) Th1- and th2-dependent endothelial progenitor cell recruitment and angiogenic switch in asthma. J Immunol 178:6482–6494

    PubMed  CAS  Google Scholar 

  34. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168:659–669

    Article  PubMed  CAS  Google Scholar 

  35. Davie NJ, Crossno JT Jr, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, McNiece IK, Stenmark KR (2004) Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol 286:L668–L678

    Article  PubMed  CAS  Google Scholar 

  36. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  37. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  38. Yoder MC (2009) Defining human endothelial progenitor cells. J Thromb Haemost 7(Suppl 1):49–52

    Article  PubMed  CAS  Google Scholar 

  39. Peault B (2010) Hemangioblasts: back to the future? Blood 116:2864–2865

    Article  PubMed  CAS  Google Scholar 

  40. Loges S, Fehse B, Brockmann MA, Lamszus K, Butzal M, Guckenbiehl M, Schuch G, Ergun S, Fischer U, Zander AR, Hossfeld DK, Fiedler W, Gehling UM (2004) Identification of the adult human hemangioblast. Stem Cells Dev 13:229–242

    Article  PubMed  CAS  Google Scholar 

  41. Sun Z, Zhang Y, Brunt KR, Wu J, Li SH, Fazel S, Weisel RD, Keating A, Li RK (2010) An adult uterine hemangioblast: evidence for extramedullary self-renewal and clonal bilineage potential. Blood 116:2932–2941

    Article  PubMed  CAS  Google Scholar 

  42. Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW (2010) Molecular analysis of endothelial progenitor cell (epc) subtypes reveals two distinct cell populations with different identities. BMC Med Genom 3:18

    Article  CAS  Google Scholar 

  43. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627

    Article  PubMed  Google Scholar 

  44. Assmus B, Rolf A, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Tillmanns H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Tonn T, Dimmeler S, Dill T, Zeiher AM, Schachinger V (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3:89–96

    Article  PubMed  Google Scholar 

  45. Chavakis E, Urbich C, Dimmeler S (2008) Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 45:514–522

    Article  PubMed  CAS  Google Scholar 

  46. Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21:1141–1149

    Article  PubMed  CAS  Google Scholar 

  47. Hur J, Yang HM, Yoon CH, Lee CS, Park KW, Kim JH, Kim TY, Kim JY, Kang HJ, Chae IH, Oh BH, Park YB, Kim HS (2007) Identification of a novel role of t cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 116:1671–1682

    Article  PubMed  Google Scholar 

  48. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  PubMed  Google Scholar 

  49. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  PubMed  CAS  Google Scholar 

  50. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786

    Article  PubMed  CAS  Google Scholar 

  51. Tan K, Lessieur E, Cutler A, Nerone P, Vasanji A, Asosingh K, Erzurum S, Anand-Apte B (2010) Impaired function of circulating cd34(+) cd45(−) cells in patients with proliferative diabetic retinopathy. Exp Eye Res 91:229–237

    Article  PubMed  CAS  Google Scholar 

  52. Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D, Yang J, Suntharalingam J, Soon E, Exley A, Stewart S, Hecker M, Zhu Z, Gehling U, Seeger W, Pepke-Zaba J, Morrell NW (2009) Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 180:780–787

    Article  PubMed  Google Scholar 

  53. Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668

    Article  PubMed  CAS  Google Scholar 

  54. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198

    Article  PubMed  CAS  Google Scholar 

  55. Zhang S, Zhang D, Sun B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254:157–164

    Article  PubMed  CAS  Google Scholar 

  56. Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108:2511–2516

    Article  PubMed  Google Scholar 

  57. Hislop A (2005) Developmental biology of the pulmonary circulation. Paediatr Respir Rev 6:35–43

    Article  PubMed  Google Scholar 

  58. Anderson-Berry A, O’Brien EA, Bleyl SB, Lawson A, Gundersen N, Ryssman D, Sweeley J, Dahl MJ, Drake CJ, Schoenwolf GC, Albertine KH (2005) Vasculogenesis drives pulmonary vascular growth in the developing chick embryo. Dev Dyn 233:145–153

    Article  PubMed  CAS  Google Scholar 

  59. Stenmark KR, Abman SH (2005) Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 67:623–661

    Article  PubMed  CAS  Google Scholar 

  60. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M (2006) Role of the adventitia in pulmonary vascular remodeling. Physiology 21:134–145

    Article  PubMed  CAS  Google Scholar 

  61. Li X, Wilson JW (1997) Increased vascularity of the bronchial mucosa in mild asthma. Am J Respir Crit Care Med 156:229–233

    PubMed  CAS  Google Scholar 

  62. Salvato G (2001) Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax 56:902–906

    Article  PubMed  CAS  Google Scholar 

  63. Vrugt B, Wilson S, Bron A, Holgate ST, Djukanovic R, Aalbers R (2000) Bronchial angiogenesis in severe glucocorticoid-dependent asthma. Eur Respir J 15:1014–1021

    Article  PubMed  CAS  Google Scholar 

  64. Pascual RM, Peters SP (2005) Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J Allergy Clin Immunol 116:477–486

    Article  PubMed  Google Scholar 

  65. Chetta A, Zanini A, Foresi A, D’Ippolito R, Tipa A, Castagnaro A, Baraldo S, Neri M, Saetta M, Olivieri D (2005) Vascular endothelial growth factor up-regulation and bronchial wall remodelling in asthma. Clin Exp Allergy 35:1437–1442

    Article  PubMed  CAS  Google Scholar 

  66. Simcock DE, Kanabar V, Clarke GW, Mahn K, Karner C, O’Connor BJ, Lee TH, Hirst SJ (2008) Induction of angiogenesis by airway smooth muscle from patients with asthma. Am J Respir Crit Care Med 178:460–468

    Article  PubMed  CAS  Google Scholar 

  67. Hashimoto M, Tanaka H, Abe S (2005) Quantitative analysis of bronchial wall vascularity in the medium and small airways of patients with asthma and copd. Chest 127:965–972

    Article  PubMed  Google Scholar 

  68. Zanini A, Chetta A, Olivieri D (2008) Therapeutic perspectives in bronchial vascular remodeling in copd. Ther Adv Respir Dis 2:179–187

    Article  PubMed  Google Scholar 

  69. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247–257

    PubMed  CAS  Google Scholar 

  70. Baluk P, Yao LC, Feng J, Romano T, Jung SS, Schreiter JL, Yan L, Shealy DJ, McDonald DM (2009) Tnf-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 119:2954–2964

    PubMed  CAS  Google Scholar 

  71. Fuxe J, Lashnits E, O’Brien S, Baluk P, Tabruyn SP, Kuhnert F, Kuo C, Thurston G, McDonald DM (2010) Angiopoietin/tie2 signaling transforms capillaries into venules primed for leukocyte trafficking in airway inflammation. Am J Pathol 176:2009–2018

    Article  PubMed  CAS  Google Scholar 

  72. Tabruyn SP, Colton K, Morisada T, Fuxe J, Wiegand SJ, Thurston G, Coyle AJ, Connor J, McDonald DM (2010) Angiopoietin-2-driven vascular remodeling in airway inflammation. Am J Pathol 177:3233–3243

    Article  PubMed  CAS  Google Scholar 

  73. Doyle TM, Ellis R, Park HJ, Inman MD, Sehmi R (2010) Modulating progenitor accumulation attenuates lung angiogenesis in a mouse model of asthma. Eur Respir J (Epub ahead of print)

  74. Asosingh K, Hanson JD, Cheng G, Aronica MA, Erzurum SC (2010) Allergen-induced, eotaxin-rich, proangiogenic bone marrow progenitors: a blood-borne cellular envoy for lung eosinophilia. J Allergy Clin Immunol 125:918–925

    Article  PubMed  CAS  Google Scholar 

  75. Heath D, Edwards JE (1958) The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 18:533–547

    PubMed  CAS  Google Scholar 

  76. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28(vii):23–42

    Article  PubMed  Google Scholar 

  77. Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF, Tuder RM (1999) Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol 155:411–419

    Article  PubMed  CAS  Google Scholar 

  78. Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM (1998) Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101:927–934

    Article  PubMed  CAS  Google Scholar 

  79. Tuder RM, Groves B, Badesch DB, Voelkel NF (1994) Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144:275–285

    PubMed  CAS  Google Scholar 

  80. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54

    Article  PubMed  Google Scholar 

  81. Masri FA, Xu W, Comhair SA, Asosingh K, Koo M, Vasanji A, Drazba J, Anand-Apte B, Erzurum SC (2007) Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293:L548–L554

    Article  PubMed  CAS  Google Scholar 

  82. Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138

    Article  PubMed  CAS  Google Scholar 

  83. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC (2007) Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 104:1342–1347

    Article  PubMed  CAS  Google Scholar 

  84. Farha S, Asosingh K, Xu W, Sharp J, George D, Comhair S, Park M, Tang WH, Loyd JE, Theil K, Tubbs R, Hsi E, Lichtin A, Erzurum SC (2011) Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities. Blood 117:3485–3493

    Article  PubMed  CAS  Google Scholar 

  85. Fong GH (2009) Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med 87:549–560

    Article  PubMed  CAS  Google Scholar 

  86. Tuder RM, Chacon M, Alger L, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci M, Semenza GL, Yacoub M, Polak JM, Voelkel NF (2001) Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 195:367–374

    Article  PubMed  CAS  Google Scholar 

  87. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    Article  PubMed  CAS  Google Scholar 

  88. Marsboom G, Pokreisz P, Gheysens O, Vermeersch P, Gillijns H, Pellens M, Liu X, Collen D, Janssens S (2008) Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells 26:1017–1026

    Article  PubMed  Google Scholar 

  89. Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, Karibe A, Minegishi N, Suzuki N, Yamamoto M, Ono M, Watanabe J, Shirato K, Ishii N, Sugamura K, Shimokawa H (2006) Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 113:1442–1450

    Article  PubMed  CAS  Google Scholar 

  90. Fadini GP, Schiavon M, Rea F, Avogaro A, Agostini C (2007) Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 176:724–725 (author reply 725)

    PubMed  Google Scholar 

  91. Diller GP, van Eijl S, Okonko DO, Howard LS, Ali O, Thum T, Wort SJ, Bedard E, Gibbs JS, Bauersachs J, Hobbs AJ, Wilkins MR, Gatzoulis MA, Wharton J (2008) Circulating endothelial progenitor cells in patients with eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation 117:3020–3030

    Article  PubMed  CAS  Google Scholar 

  92. Hayashida K, Fujita J, Miyake Y, Kawada H, Ando K, Ogawa S, Fukuda K (2005) Bone marrow-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Chest 127:1793–1798

    Article  PubMed  Google Scholar 

  93. Asosingh K, Erzurum SC, Yoder MC, Tuder RM (2009) Letter by asosingh et al. regarding article, “circulating endothelial progenitor cells in patients with eisenmenger syndrome and idiopathic pulmonary arterial hypertension”. Circulation 119:e230 (author reply e231)

    Article  PubMed  Google Scholar 

  94. Toshner M, Morrell NW (2010) Endothelial progenitor cells in pulmonary hypertension—dawn of cell-based therapy? Int J Clin Pract Suppl 165:7–12

    Article  PubMed  CAS  Google Scholar 

  95. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and enos gene therapy in established disease. Circ Res 96:442–450

    Article  PubMed  CAS  Google Scholar 

  96. Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H, Shimizu Y (2004) Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng 10:771–779

    Article  PubMed  Google Scholar 

  97. Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H (2003) Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 108:889–895

    Article  PubMed  CAS  Google Scholar 

  98. Wang XX, Zhang FR, Shang YP, Zhu JH, Xie XD, Tao QM, Chen JZ (2007) Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 49:1566–1571

    Article  PubMed  CAS  Google Scholar 

  99. Zhu JH, Wang XX, Zhang FR, Shang YP, Tao QM, Chen JZ (2008) Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: open-label pilot study. Pediatr Transplant 12:650–655

    Article  PubMed  Google Scholar 

  100. Teofili L, Martini M, Cenci T, Petrucci G, Torti L, Storti S, Guidi F, Leone G, Larocca LM (2007) Different stat-3 and stat-5 phosphorylation discriminates among ph-negative chronic myeloproliferative diseases and is independent of the v617f jak-2 mutation. Blood 110:354–359

    Article  PubMed  CAS  Google Scholar 

  101. Montani D, Perros F, Gambaryan N, Girerd B, Dorfmuller P, Price LC, Huertas A, Hammad H, Lambrecht B, Simonneau G, Launay JM, Cohen-Kaminsky S, Humbert M (2011) C-kit positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med (Epub ahead of print)

  102. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  PubMed  CAS  Google Scholar 

  103. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M (2006) Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 21:134–145

    Article  CAS  Google Scholar 

  104. Belknap JK, Orton EC, Ensley B, Tucker A, Stenmark KR (1997) Hypoxia increases bromodeoxyuridine labeling indices in bovine neonatal pulmonary arteries. Am J Respir Cell Mol Biol 16:366–371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank B. Savasky and L. Kaydo for assistance with manuscript preparation and D. Schumick for graphic illustration. Supported by American Heart Association 11SDG4990003, American Thoracic Society/Pulmonary Association Research grant (PH-07-003), NIH RC37 HL060917. K. Asosingh is a scholar of the International Society for Advancement of Cytometry. H. Duong is a Howard Hughes Medical Institute Medical Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal Asosingh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duong, H.T., Erzurum, S.C. & Asosingh, K. Pro-angiogenic hematopoietic progenitor cells and endothelial colony-forming cells in pathological angiogenesis of bronchial and pulmonary circulation. Angiogenesis 14, 411–422 (2011). https://doi.org/10.1007/s10456-011-9228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9228-y

Keywords

Navigation