Skip to main content
Log in

Recent advances in endometrial angiogenesis research

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

This review summarises recent research into the mechanisms and regulation of endometrial angiogenesis. Understanding of when and by what mechanisms angiogenesis occurs during the menstrual cycle is limited, as is knowledge of how it is regulated. Significant endometrial endothelial cell proliferation occurs at all stages of the menstrual cycle in humans, unlike most animal models where a more precise spatial relationship exists between endothelial cell proliferation and circulating levels of oestrogen and progesterone. Recent stereological data has identified vessel elongation as a major endometrial angiogenic mechanism in the mid-late proliferative phase of the cycle. In contrast, the mechanisms that contribute to post-menstrual repair and secretory phase remodelling have not yet been determined. Both oestrogen and progesterone/progestins appear to have paradoxical actions, with recent studies showing that under different circumstances both can promote as well as inhibit endometrial angiogenesis. The relative contribution of direct versus indirect effects of these hormones on the vasculature may help to explain their pro- or anti-angiogenic activities. Recent work has also identified the hormone relaxin as a player in the regulation of endometrial angiogenesis. While vascular endothelial growth factor (VEGF) is fundamental to endometrial angiogenesis, details of how and when different endometrial cell types produce VEGF, and how production and activity is controlled by oestrogen and progesterone, remains to be elucidated. Evidence is emerging that the different splice variants of VEGF play a major role in regulating endometrial angiogenesis at a local level. Intravascular neutrophils containing VEGF have been identified as having a role in stimulating endometrial angiogenesis, although other currently unidentified mechanisms must also exist. Future studies to clarify how endometrial angiogenesis is regulated in the human, as well as in relevant animal models, will be important for a better understanding of diseases such as breakthrough bleeding, menorrhagia, endometriosis and endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

ER:

oestrogen receptor

LNG:

levonorgestrel

L v :

vessel length density

Lv/Nv:

average vessel length per branch point

MMP:

metalloproteinase

MPA:

medroxyprogesterone acetate

MP-MMP:

membrane type metalloproteinase

N v :

vessel branch point density

PA:

plasminogen

PR:

progesterone receptor

TNF-α:

tumour necrosis factor-α

u-PA:

urokinase-type plasminogen activator

VEGF:

vascular endothelial growth factor

VEGFR:

vascular endothelial growth factor receptor

References

  1. Fraser HM, Lunn SF. Angiogenesis and its control in the female reproductive system. Br Med Bull 2000; 56:787–97

    Article  PubMed  CAS  Google Scholar 

  2. Gargett CE, Rogers PAW. Human endometrial angiogenesis. Reproduction 2001; 121:181–6

    Article  PubMed  CAS  Google Scholar 

  3. Smith SK. Angiogenesis and Reproduction. BJOG 2001; 108:777–83

    Article  PubMed  CAS  Google Scholar 

  4. Gargett CE, Weston G, Rogers PAW. Mechanisms and regulation of endometrial angiogenesis. Reprod Med Review 2002; 10:45–61

    Article  CAS  Google Scholar 

  5. Albrecht ED, Pepe GJ. Steroid hormone regulation of angiogenesis in the primate endometrium. Frontiers in Bioscience 2003; 8:d416–29

    CAS  Google Scholar 

  6. Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis? Cell 1996; 87:1153–5

    Article  PubMed  CAS  Google Scholar 

  7. Risau W. Mechanisms of Angiogenesis. Nature 1997; 386:671–4

    Article  PubMed  CAS  Google Scholar 

  8. Ashara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85:221–8

    PubMed  Google Scholar 

  9. Burri PH, Djonov V. Intussusceptive angiogenesis – the alternative to capillary sprouting. Mol Aspects Med 2002; 23:S1–27

    Article  PubMed  Google Scholar 

  10. Ono M, Shiina Y. Cytological evaluation of angiogenesis in endometrial aspirates. Cytopathology 2001; 12:37–43

    Article  PubMed  CAS  Google Scholar 

  11. Goodger AM, Rogers PAW. Endometrial endothelial cell proliferation during the menstrual cycle. Hum Reprod 1994; 9:399–405

    PubMed  CAS  Google Scholar 

  12. Wingfield M, Macpherson A, Healy DL et al. Cell proliferation is increased in the endometrium of women with endometriosis. Fertil Steril 1995; 64:340–6

    PubMed  CAS  Google Scholar 

  13. Kooy J, Taylor NH, Healy DL et al. Endothelial cell proliferation in the endometrium of women with menorrhagia and in women following endometrial ablation. Hum Reprod 1996; 11:1067–72

    PubMed  CAS  Google Scholar 

  14. Hii LLP, Rogers PAW. Endometrial vascular and glandular expression of integrin βvα 3 in women with and without endometriosis. Hum Reprod 1998; 13:1030–5

    Article  PubMed  CAS  Google Scholar 

  15. Gambino LS, Wreford NG, Bertram JF et al. Angiogenesis occurs by vessel elongation in proliferative phase human endometrium. Hum Reprod 2002; 17:1199–206

    Article  PubMed  Google Scholar 

  16. Patan S, Alvarez MJ, Schittny JC et al. Intussusceptive microvascular growth: a common alternative to capillary sprouting. Arch Histol Cytol 1992; 55:65–75

    PubMed  Google Scholar 

  17. Djonov VG, Galli AB, Burri PH. Intussusceptive arborization contributes to vascular tree formation in the chick chorio-allantoic membrane. Anat Embryol 2000; 202:347–57

    Article  PubMed  CAS  Google Scholar 

  18. Rogers PAW, Lederman F, Taylor N. Endometrial microvascular growth in normal and dysfunctional states. Hum Reprod Update 1998; 4:503–8

    Article  PubMed  CAS  Google Scholar 

  19. Nayak NR, Brenner RM. Vascular proliferation and the vascular endothelial growth factor expression in the rhesus macaque endometrium. J Clin Endocrinol Metab 2002; 87:1845–1855

    Article  PubMed  CAS  Google Scholar 

  20. Maconi F, Markham R, Cox G et al. Computer-generated, three-dimensional reconstruction of histological parallel serial sections displaying microvascular and glandular structures in human endometrium. Micron 2001; 32:449–53

    Article  PubMed  Google Scholar 

  21. Maconi F, Kable E, Cox G et al. Whole-mount sections displaying microvascular and glandular structures in human uterus using multiphoton excitation microscopy. Micron 2003; 34:351–8

    Article  PubMed  Google Scholar 

  22. Simbar M, Maconi F, Markham R et al. A three-dimensional study of endometrial microvessels in women using the contraceptive subdermal levonorgestrel implant system, norplant. Micron 2004; 35:589–95

    Article  PubMed  CAS  Google Scholar 

  23. Critchley HOD, Brenner RM, Henderson TA et al. Estrogen receptor β, but not estrogen receptor α, is present in the vascular endothelium of the human and nonhuman primate endometrium. J Clin Endocrinol Metab 2001; 86:1370–8

    Article  PubMed  CAS  Google Scholar 

  24. Leece G, Meduri G, Ancelin M et al. Presence of estrogen receptor β in the human endometrium through the cycle: expression in glandular, stromal, and vascular cells. J Clin Endocrinol Metab 2001; 86:1379–86

    Article  PubMed  Google Scholar 

  25. Kayisli UA, Luk J, Guzeloglu-Kayisli O et al. Regulation of angiogenic activity of human endometrial endothelial cells in culture by ovarian steroids. J Clin Endocrinol Metab 2004; 89:5794–802

    Article  PubMed  CAS  Google Scholar 

  26. Krikun G, Schatz F, Taylor R et al. Endometrial endothelial cell steroid receptor expression and steroid effects on gene expression. J Clin Endocrinol Metab, 2005; 90: 1812–8

    Google Scholar 

  27. Moore JT, McKee DD, Slentz-Kesler K et al. Cloning and characterization of human estrogen receptor β isoforms. Biochem Biophys Res Commun 1998; 247:75–8

    Article  PubMed  CAS  Google Scholar 

  28. Ogawa S, Inoue S, Watanabe T et al. Molecular cloning and characterization of human estrogen receptor βcx: a potential inhibitor of estrogen action in human. Nucleic Acids Res 1998; 26:3505–12

    Article  PubMed  CAS  Google Scholar 

  29. Critchley HOD, Henderson TA, Kelly RW. Wild-type estrogen receptor (ERβ 1) and the splice variant (ERβcx/β 2) are both expressed within the human endometrium throughout the normal menstrual cycle. J Clin Endocrinol Metab 2002; 87:5265–73

    Article  PubMed  CAS  Google Scholar 

  30. Iruela-Arispe ML, Rodriguez-Manzaneque JC, Abu-Jawdeh G. Endometrial endothelial cells express estrogen and progesterone receptors and exhibit a tissue specific response to angiogenic growth factors. Microcirculation 1999; 6:127–40

    Article  PubMed  CAS  Google Scholar 

  31. Reynolds LP, Kirsch JD, Draft KC et al. Time-course analysis of the uterine response to estradiol-17β in ovariectomised ewes: uterine growth and microvascular development. Biol Reprod 1998; 59:606–12

    PubMed  CAS  Google Scholar 

  32. Albrecht ED, Aberdeen GW, Niklaus AL et al. Acute temporal regulation of vascular endothelial growth/permeability factor expression and endothelial morphology in the baboon endometrium by ovarian steroids. J Clin Endocrinol Metab 2003; 88:2844–52

    Article  PubMed  CAS  Google Scholar 

  33. Ma W, Tan J, Matsumoto B et al. Adult tissue angiogenesis: evidence for negative regulation by estrogen in the uterus. Mol Endocrinol 2001; 15:1983–92

    Article  PubMed  CAS  Google Scholar 

  34. Heryanto B, Rogers PAW. Regulation of endometrial endothelial cell proliferation by oestrogen and progesterone in the ovariectomised mouse. Reproduction 2002; 123:107–13

    Article  PubMed  CAS  Google Scholar 

  35. Heryanto B, Lipson KE, Rogers PAW. Effect of angiogenesis inhibitors on oestrogen-mediated endometrial endothelial cell proliferation in the ovariectomised mouse. Reproduction 2003; 125:337–46

    Article  PubMed  CAS  Google Scholar 

  36. Hastings JM, Licence DR, Burton GJ et al. Soluble vascular endothelial growth factor receptor 1 inhibits edema and epithelial proliferation induced by 17β-Estradiol in the mouse uterus. Endocrinology 2003; 144:326–34

    Article  PubMed  CAS  Google Scholar 

  37. Várquez F, Rodríguez-Manzaneque JC, Lydon JP et al. Progesterone regulates proliferation of endothelial cells. J Biol Chem 1999; 274:2185–92

    Article  PubMed  Google Scholar 

  38. Mulac-Jericevic B, Conneely OM. Reproductive tissue selective actions of progesterone receptors. Reproduction 2004; 128:139–46

    Article  PubMed  CAS  Google Scholar 

  39. Goodger (Macpherson) AM, Rogers PAW. Uterine endothelial cell proliferation before and after embryo implantation in rats. J Reprod Fertil 1993; 99:451–7

    Article  PubMed  Google Scholar 

  40. Walter LM, Rogers PAW, Girling JE. The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction 2005; 129: 765–77

    Article  PubMed  CAS  Google Scholar 

  41. Hickey M, Frazer IS. A functional model for progestin-induced breakthrough bleeding. Hum Reprod 2000; 15(Suppl. 3):1–6

    Article  PubMed  CAS  Google Scholar 

  42. Hickey M, Frazer IS. Human uterine vascular structures in normal and diseased states. Microsc Res Tech 2003; 60:377–89

    Article  PubMed  Google Scholar 

  43. Rogers PAW, Au CL, Affandi B. Endometrial microvascular density during the normal menstrual cycle and following exposure to long-term levonorgestrel. Hum Reprod 1993; 8:1396–404

    PubMed  CAS  Google Scholar 

  44. Hickey M, Simbar M, Young L et al. A longitudinal study of changes in endometrial microvascular density in Norplant® implant users. Contraception 1999; 59:123–129

    Article  PubMed  CAS  Google Scholar 

  45. Song JY, Markham R, Russell P et al. The effect of high-dose medium- and long-term progestogen exposure on endometrial vessels. Hum Reprod 1995; 10:797–800

    PubMed  CAS  Google Scholar 

  46. Girling JE, Heryanto B, Patel N et al. Effect of long-term progestin treatment on endometrial vasculature in normal cycling mice. Contraception 2004; 70:343–50

    Article  PubMed  CAS  Google Scholar 

  47. Livingstone M, Fraser IS. Mechanisms of abnormal uterine bleeding. Hum Reprod Update 2002; 8:60–7

    Article  PubMed  Google Scholar 

  48. Lockwood CJ, Schatz F, Krikun G. Angiogenic factors and the endometrium following long term progestin only contraception. Histol Histopathol 2004; 19:167–172

    PubMed  CAS  Google Scholar 

  49. Bathgate RAD, Samuel CS, Tanya CD et al. Relaxin: new peptides, receptors and novel actions. Trends Endocrinol Metab 2003; 14:207–13

    Article  PubMed  CAS  Google Scholar 

  50. Ivell R. This hormone has been relaxin’ to long! Science 2002; 295:637–8

    PubMed  CAS  Google Scholar 

  51. Einspanier A, Müller D, Lubberstedt J et al. Characterization of relaxin binding in the uterus of the marmoset monkey. Mol Hum Reprod 2001; 7:963–70

    Article  PubMed  CAS  Google Scholar 

  52. Ivell R, Balvers M, Pohnke Y et al. Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reprod Biol Endocrinol 2003; 1:114

    Article  Google Scholar 

  53. Bond CP, Parry LJ, Samuel CS et al. Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle. J Clin Endocrinol Metab 2004; 89:3477–85

    Article  PubMed  CAS  Google Scholar 

  54. Unemori EN, Erikson ME, Rocco SE et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum Reprod 1999; 14:800–6

    Article  PubMed  CAS  Google Scholar 

  55. Palejwala S, Tseng L, Wojtczuk A et al. Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod 2002; 66:1743–8

    PubMed  CAS  Google Scholar 

  56. Goldsmith LT, Weiss G, Palejwala S, et al. Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci USA 2004; 101:4685–89

    Article  PubMed  CAS  Google Scholar 

  57. Zhao L, Roche PJ, Gunnersen JM et al. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology 1999; 140:445–53

    Article  PubMed  CAS  Google Scholar 

  58. Zudaire E, Martínez A, Cuttitta F. Adrenomedullin and cancer. Regul Pept 2003; 112:175–83

    Article  PubMed  CAS  Google Scholar 

  59. Zhao Y, Hague S, Manek S et al. PCR display identifies tamoxifen induction of the novel angiogenic factor adrenomedullin by a non estrogenic mechanism in the human endometrium. Oncogene 1998; 16:409–15

    Article  PubMed  CAS  Google Scholar 

  60. Michishita M, Minegishi T, Abe K et al. Expression of adrenomedullin in the endometrium of the human uterus. Obstet Gynecol 1999; 93:66–70

    Article  PubMed  CAS  Google Scholar 

  61. Nikitenko LL, MacKenzie IZ, Rees MCP et al. Adrenomedullin is an autocrine regulator of endothelial growth in human endometrium. Mol Hum Reprod 2000; 6:811–9

    Article  PubMed  CAS  Google Scholar 

  62. Ferrara N, DavisSmyth T. The biology of vascular endothelial growth factor. Endocrine Rev 1997; 18:4–25

    Article  PubMed  CAS  Google Scholar 

  63. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004; 25:581–611

    Article  PubMed  CAS  Google Scholar 

  64. Charnock Jones DS, Sharkey AM, Rajput-Williams J et al. Identification and localization of alternatively spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod 1993; 48:1120–8

    PubMed  CAS  Google Scholar 

  65. Gordon JD, Shifren JL, Foulk RA et al. Angiogenesis in the human female reproductive tract. Obstet Gynecol Surv 1995; 50:688–97

    Article  PubMed  CAS  Google Scholar 

  66. Torry DS, Torry RJ. Angiogenesis and the expression of vascular endothelial growth factor in endometrium and placenta. Am J Reprod Immunol 1997; 37:21–9

    PubMed  CAS  Google Scholar 

  67. Meduri G, Bausero P, Perrot-Applanat M. Expression of vascular endothelial growth factor receptors in human endometrium: modulation during the menstrual cycle. Biol Reprod 2000; 62:439–47

    PubMed  CAS  Google Scholar 

  68. Zhang L, Rees MCP, Bicknell R. The isolation and long-term culture of normal human endometrial epithelium and stroma. J Cell Sci 1995; 108:323–31

    PubMed  CAS  Google Scholar 

  69. Shifren JL, Tseng JF, Zaloudek CJ et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab 1996; 81:3112–8

    Article  PubMed  CAS  Google Scholar 

  70. Torry DS, Holt VJ, Keenan JA et al. Vascular endothelial growth factor expression in cycling human endometrium. Fertil Steril 1996; 66:72–80

    PubMed  CAS  Google Scholar 

  71. Bausero P, Cavillé F, Méduri G et al. Paracrine action of vascular endothelial growth factor in the human endometrium: production and target sites, and hormonal regulation. Angiogenesis 1998; 2:176–82

    Google Scholar 

  72. Perrot-Applanat M, Ancelin M, Buteau-Lozano H et al. Ovarian steroids in endometrial angiogenesis. Steroids 2000; 65(10–11): 599–603

    Article  Google Scholar 

  73. Graubert MD, Ortega MA, Kessel B et al. Vascular repair after menstruation involves regulation of vascular endothelial growth factor-receptor phosphorylation by sFLT-1. Am J Pathol 2001; 158:1399–410

    PubMed  CAS  Google Scholar 

  74. Cullinan-Bove K, Koos RD. Vascular endothelial growth factor/vascular permeability factor expression in the rat uterus: rapid stimulation by estrogen correlates with estrogen-induced increases in uterine capillary permeability and growth. Endocrinology 1993; 133:829–37

    Article  PubMed  CAS  Google Scholar 

  75. Shweiki D, Ahuva I, Neufeld G et al. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggests a role in hormonally regulated angiogenesis. J Clin Invest 1993; 91:2235–43

    Article  PubMed  CAS  Google Scholar 

  76. Reynolds LP, Kirsch JD, Kraft KC et al. Time-course of the uterine response to estradiol-17β in ovariectomised ewes: expression of angiogenic factors. Biol Reprod 1998; 59:613–20

    PubMed  CAS  Google Scholar 

  77. Hyder SM, Huang J-C, Nawaz Z et al. Regulation of vascular endothelial growth factor expression by estrogens and progestins. Environ Health Perspect 2000; 108:785–90

    PubMed  CAS  Google Scholar 

  78. Niklaus AL, Aberdeen GW, Babischkin JS et al. Effect of estrogen on vascular endothelial growth factor/permeability factor expression by glandular epithelial and stromal cells in the baboon endometrium. Biol Reprod 2003; 68:1997–2004

    Article  PubMed  CAS  Google Scholar 

  79. Niklaus AL, Babischkin JS, Aberdeen GW et al. Expression of vascular endothelial growth/permeability factor by endometrial glandular epithelial and stromal cells in baboons during the menstrual cycle and after ovariectomy. Endocrinology 2002; 143:4007–17

    Article  PubMed  CAS  Google Scholar 

  80. Huang JC, Kiu DY, Dawood MY. The expression of vascular endothelial growth factor isoforms in cultured human endometrial stromal cells and its regulation by 17β-estradiol. Mol Hum Reprod 1998; 4:603–7

    Article  PubMed  CAS  Google Scholar 

  81. Hornung D, Lebovic DI, Shifren JL et al. Vectorial secretion of vascular endothelial growth factor by polarized human endometrial epithelial cells. Fertil Steril 1998; 69:909–15

    Article  PubMed  CAS  Google Scholar 

  82. Albrecht ED, Babischkin JS, Lidor Y et al. Effect of estrogen on angiogenesis in co-cultures of human endometrial cells and microvascular endothelial cells. Hum Reprod 2003; 18:2039–47

    Article  PubMed  CAS  Google Scholar 

  83. Ancelin M, Buteau-Lozano H, Meduri G et al. A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proc Natl Acad Sci USA 2002; 99:6023–28

    Article  PubMed  CAS  Google Scholar 

  84. Markee JE. Menstruation in intraocular endometrial transplants in the rhesus monkey. Contrib Embryol 1940; 177:220–230

    Google Scholar 

  85. Salamonsen LA, Lathbury LJ. Endometrial leukocytes and menstruation. Hum Reprod 2000; 6:16–27

    Article  CAS  Google Scholar 

  86. Salamonsen LA. Tissue injury and repair in the female reproductive tract. Reprod 2003; 125:301–311

    Article  CAS  Google Scholar 

  87. Fraser IS, Peek MJ. Effects of exogenous hormones on endometrial capillaries. In Alexander NJ, d’Arcangues, C (eds): Steroid hormones and uterine bleeding. Washington: AAAS Publications 1992; 65–79

    Google Scholar 

  88. Gannon BJ, Carati CJ, Verco CJ. Endometrial perfusion across the normal human menstrual cycle assessed by laser Doppler fluxmetry. Hum Reprod 1997; 12:132–139

    Article  PubMed  CAS  Google Scholar 

  89. Zhang J, Salamonsen LA. Expression of hypoxia-inducible factors in human endometrium and suppression of matrix metalloproteinases under hypoxic conditions do not support a major role for hypoxia in regulating tissue breakdown at menstruation. Hum Reprod 2002; 17:265–74

    Article  PubMed  CAS  Google Scholar 

  90. Kookwijk P, Kapiteijn K, Molenaar B et al. Enhanced angiogenic capacity and urokinase-type plasminogen activator expression by endothelial cells isolated from human endometrium. J Clin Endocrinol Metab 2001; 86:3359–67

    Article  PubMed  CAS  Google Scholar 

  91. Schatz F, Soderland C, Hendricks-Muóoz KD et al. Human endometrial endothelial cells: isolation, characterization, and inflammatory-mediated expression of tissue factor and type 1 plasminogen activator inhibitor. Biol Reprod 2000; 62:691–697

    PubMed  CAS  Google Scholar 

  92. Plaisier M, Kapiteijn K, Koolwijk P et al. Involvement of membrane-type matrix metalloproteinases (MT-MMPs) in capillary tube formation by human endometrial microvascular endothelial cells: Role of MT3-MMP. J Clin Endocrinol Metab 2004; 89:5828–36

    Article  PubMed  CAS  Google Scholar 

  93. Rakic JM, Maillard C, Bajou K et al. Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci 2003; 60:463–73

    Article  PubMed  CAS  Google Scholar 

  94. Print C, Valtoa R, Evans A et al. Soluble factors from human endometrium promote angiogenesis and regulate the endothelial cell transcriptome. Hum Reprod 2004; 19:2356–66

    Article  PubMed  CAS  Google Scholar 

  95. Li XF, Gregory J, Ahmed A. Immunolocalisation of vascular endothelial growth factor in human endometrium. Growth Factors 1994; 11:277–82

    PubMed  CAS  Google Scholar 

  96. Zhang L, Scott PAE, Turley H et al. Validation of anti-vascular endothelial growth factor (anti-VEGF) antibodies for immunohistochemical localization of VEGF in tissue sections: expression of VEGF in the human endometrium. J Pathol 1998; 185:402–8

    Article  PubMed  CAS  Google Scholar 

  97. Rogers PAW, Gargett CE. Endometrial angiogenesis. Angiogenesis 1999; 2:287–94

    Article  Google Scholar 

  98. Wei P, Chen X-L, Song X-X et al. VEGF, bFGF and their receptors in the endometrium of rhesus monkey during menstrual cycle and early pregnancy. Placenta 2004; 25:184–96

    Article  PubMed  CAS  Google Scholar 

  99. Gargett CE, Lederman F, Lau TM et al. Lack of correlation between vascular endothelial growth factor production and endothelial cell proliferation in the human endometrium. Hum Reprod 1999; 14:2080–8

    Article  PubMed  CAS  Google Scholar 

  100. Gargett CE, Lederman F, Heryanto B et al. Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Hum Reprod 2001; 16:1065–75

    Article  PubMed  CAS  Google Scholar 

  101. Mueller MD, Lebovic DI, Garrett E et al. Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil Steril 2000; 74:107–12

    Article  PubMed  CAS  Google Scholar 

  102. Heryanto PAW, Girling JE, Rogers PAW. Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 2004; 127:613–20.8

    Article  PubMed  CAS  Google Scholar 

  103. Wood GW, Hausmann E, Choudhuri R. Relative role of CSF-1, MCP-1/JE, and RANTES in macrophage recruitment during successful pregnancy. Mol Reprod Develop 1997; 46:62–70

    Article  CAS  Google Scholar 

  104. Ancelin M, Chollet-Martin S, Hervé MA et al. Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism. Lab Invest 2004; 84:502–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council project grant #124331 to PR. PR’s salary is provided by NH&MRC Fellowship grant #143805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Girling.

Additional information

Correspondence to: Dr Jane Girling, Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168, Australia. Tel: +61-3-9594-5392; +61-3-9594-6389; E-mail: jane.girling@med.monash.edu.au

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girling, J.E., Rogers, P.A. Recent advances in endometrial angiogenesis research. Angiogenesis 8, 89–99 (2005). https://doi.org/10.1007/s10456-005-9006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9006-9

Keywords

Navigation