Skip to main content
Log in

Invariant four-forms and symmetric pairs

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give criteria for real, complex, and quaternionic representations to define s-representations, focusing on exceptional Lie algebras defined by spin representations. As applications, we obtain the classification of complex representations whose second exterior power is irreducible or has an irreducible summand of co-dimension one, and we give a conceptual computation-free argument for the construction of the exceptional Lie algebras of compact type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.: Lectures on Exceptional Lie Groups. Mahmud, Z., Mimira, M. (eds.) University of Chicago Press, Chicago (1996)

  2. Baez J.: The Octonions. Bull. Amer. Math. Soc. 39(2), 145–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besse, A.: Einstein Manifolds [Ergebnisse der Mathematik und ihrer Grenzgebiete (3)], vol. 10. Springer, Berlin (1987)

  4. Dynkin E.B.: Maximal subgroups of the classical groups. Amer. Math. Soc. Transl. Ser. 2 6, 245–378 (1957)

    MATH  Google Scholar 

  5. Eschenburg J.-H., Heintze E.: Polar representations and symmetric spaces. J. Reine Angew. Math. 507, 93–106 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Figueroa-O’Farrill J.: A geometric construction of the exceptional Lie algebras F4 and E8. Commun. Math. Phys. 283(3), 663–674 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Green M., Schwartz J., Witten E.: Superstring Theory, vol. 1. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  8. Heintze E., Ziller W.: Isotropy irreducible spaces and s-representations. Differential Geom. Appl. 6(2), 181–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kostant B.: On invariant skew-tensors. Proc. Natl. Acad. Sci. USA 42, 148–151 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kostant B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J. 100(3), 447–501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawson B., Michelson M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  12. Landsberg J.M., Manivel L.: Construction and classification of complex simple Lie algebras via projective geometry. Selecta Math. (N.S.) 8(1), 137–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. LiE software, http://www-math.univ-poitiers.fr/maavl/LiE/

  14. Moroianu, A., Pilca, M.: Higher rank homogeneous Clifford structures. arXiv:1110.4260

  15. Moroianu A., Semmelmann U.: Clifford structure on Riemannian manifolds. Adv. Math. 228(2), 940–967 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, M., Ziller, W.: On the isotropy representations of a symmetric space. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue 253–261 (1984)

  17. Wang M., Ziller W.: Symmetric spaces and strongly isotropy irreducible spaces. Math. Ann. 296, 285–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Moroianu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroianu, A., Semmelmann, U. Invariant four-forms and symmetric pairs. Ann Glob Anal Geom 43, 107–121 (2013). https://doi.org/10.1007/s10455-012-9336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-012-9336-y

Keywords

Mathematics Subject Classification (2000)

Navigation