Skip to main content

Advertisement

Log in

Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption may be a potentially attractive alternative to capturing CO2 from stationary sources in the context of Carbon Capture and Sequestration (CCS) technologies. Activated carbon and zeolites are state-of-art adsorbents which may be used for CO2 adsorption, however physisorption alone tends to be insignificant at high temperatures. In the present work, commercial adsorbents have been impregnated with monoethanolamine (MEA) and triethanolamine (TEA) in order to investigate the effect of the modified surface chemistry on CO2 adsorption, especially above room temperature. Adsorption isotherms for CO2, N2 and CH4 were measured in a gravimetrically system in the pressure range of UHV to 10 bar, at 298 and 348 K for activated carbon and zeolite 13X supports. The adsorbed concentration of CO2 was significantly higher than those of CH4 and N2 for both adsorbents in the whole pressure range studied, zeolite 13X showing a remarkable affinity for CO2 at very low pressures. However, at 348 K, the adsorbed concentration of CO2 decreases significantly. The supports impregnated with concentrated amine solutions and dried in air suffered a detrimental effect on the textural properties, although CO2 uptake became much less susceptible to temperature increase. Impregnations carried out with dilute solution followed by drying in inert atmosphere yielded materials with very similar textural characteristics as compared to the parent support. CO2 isotherms in such materials showed a significant change with similar capacities at 348 K as compared to the original support at 298 K in the case of activated carbons. The impregnated zeolite showed a decrease in adsorbed phase concentration in low pressures for a given temperature, but the adsorbed amount also seemed to be less affected by temperature. These results are promising and indicate that CO2 adsorption may be enhanced despite high process temperatures (e.g. 348 K), if convenient impregnation and drying methods are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arenillas, A., Smith, K.M., Drage, T.C., Snape, C.E.: CO2 capture using some fly ash-derived carbon materials. Fuel 84, 2204–2210 (2005)

    Article  CAS  Google Scholar 

  • Bastos-Neto, M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L.: Methane adsorption storage using microporous carbons obtained from coconut shells. Adsorption 11, 911–915 (2005)

    Article  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004)

    Article  CAS  Google Scholar 

  • Chatti, R., Bansiwal, A.K., Thote, J.A., Kumar, V., Jadhav, P., Lokhande, S.K., Biniwale, R.B., Labhsetwar, N.K., Rayalu, S.S.: Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous Mesoporous Mater. 121, 84–89 (2009)

    Article  CAS  Google Scholar 

  • Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009)

    Article  CAS  Google Scholar 

  • D’Alessandro, D.M., Smit, B., Long, R.J.: Carbon dioxide capture: prospects for new materials. Angew. Chem. 49, 6058–6082 (2010)

    Article  Google Scholar 

  • Drage, T.C., Arenillas, A., Smith, K.M., Pevida, C., Piippo, S., Snape, C.E.: Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel 86, 22–31 (2007)

    Article  CAS  Google Scholar 

  • Drage, T.C., Blackman, J.M., Pevida, C., Snape, C.E.: Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23, 2790–2796 (2009)

    Article  CAS  Google Scholar 

  • Dreisbach, F., Losch, H.W., Harting, P.: Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume. Adsorption 8, 95–109 (2002)

    Article  CAS  Google Scholar 

  • Ebner, A.D., Ritter, J.A.: State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 44, 1273–1421 (2009)

    Article  CAS  Google Scholar 

  • Figueroa, J.D., Fout, T., Plasynski, S., Mcilvried, H., Srivastava, R.D.: Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control 2, 9–20 (2008)

    Article  CAS  Google Scholar 

  • Gargiulo, N., Caputo, D., Colella, C.: Preparation and characterization of polyethylenimine-modified mesoporous silicas as CO2 sorbents. Stud. Surf. Sci. Catal. 170, 1938–1943 (2007)

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • Jadhav, P.D., Chatti, R.V., Biniwale, R.B., Labhsetwar, N.K., Devotta, S., Rayalu, S.S.: Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21, 3555–3559 (2007)

    Article  CAS  Google Scholar 

  • Khatri, R.A., Chuang, S.S.C., Soong, Y., Gray, M.: Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 20, 1514–1520 (2006)

    Article  CAS  Google Scholar 

  • Knowles, G.P., Delaney, S.W., Chaffee, A.L.: Diethylenetriamine[propyl(silyl)] functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind. Eng. Chem. Res. 45, 2626–2633 (2006)

    Article  CAS  Google Scholar 

  • Ko, D., Siriwardane, R., Biegler, L.T.: Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Ind. Eng. Chem. Res. 44, 8084–8094 (2005)

    Article  CAS  Google Scholar 

  • Maroto-Valer, M.M., Lu, Z., Zhang, Y., Tang, Z.: Sorbents for CO2 capture from high carbon fly ashes. Waste Manag. 28, 2320–2328 (2008)

    Article  Google Scholar 

  • Maroto-Valer, M.M., Tang, Z., Zhang, Y.: CO2 capture by activated and impregnated anthracites. Fuel Process. Technol. 86, 1487–1502 (2005)

    Article  CAS  Google Scholar 

  • Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F., Pis, J.J.: CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86, 2204–2212 (2007)

    Article  CAS  Google Scholar 

  • Przepiórski, J., Skrodzewicz, M., Morawski, A.W.: High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. 225, 235–242 (2004)

    Article  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders & Porous Solids. Academic Press, San Diego (1999)

    Google Scholar 

  • Satyapal, S., Filburn, T., Trela, J., Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 15, 250–255 (2001)

    Article  CAS  Google Scholar 

  • Sircar, S., Golden, T.C., Rao, M.B.: Activated carbon for gas separation and storage. Carbon 34, 1–12 (1996)

    Article  CAS  Google Scholar 

  • Siriwardane, R.V., Shen, M.S., Fisher, E.P.: Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19, 1153–1159 (2005)

    Article  CAS  Google Scholar 

  • Son, W.J., Choi, J.S., Ahn, W.S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008)

    Article  CAS  Google Scholar 

  • Thote, J.A., Iyer, K.S., Chatti, R., Labhsetwar, N.K., Biniwale, R.B., Rayalu, S.S.: In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 48, 396–402 (2010)

    Article  CAS  Google Scholar 

  • Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., Todd, R.: Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14, 575–582 (2008)

    Article  CAS  Google Scholar 

  • Xu, X.C., Song, C.S., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002)

    Article  CAS  Google Scholar 

  • Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H.: CO2 Capture by as-prepared SBA-15 with an occluded organic template. Adv. Funct. Mater. 16, 1717–1722 (2006)

    Article  CAS  Google Scholar 

  • Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L.: Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind. Eng. Chem. Res. 44, 3099–3105 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana C. S. Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerra, D.P., Oliveira, R.S., Vieira, R.S. et al. Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption 17, 235–246 (2011). https://doi.org/10.1007/s10450-011-9320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-011-9320-z

Keywords

Navigation