Skip to main content

Advertisement

Log in

Lagrangian Postprocessing of Computational Hemodynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Org. 31(9):677–688, 2007.

    Google Scholar 

  2. Anand, M., K. Rajagopal, and K. R. Rajagopal. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood: review article. J. Theor. Med. 5(3–4):183–218, 2003.

    Google Scholar 

  3. Apel, J., R. Paul, S. Klaus, T. Siess, and H. Reul. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Org. 25(5):341–347, 2001.

    CAS  Google Scholar 

  4. Argyris, J. H., G. Faust, and M. Haase. An Exploration of Chaos: An Introduction for Natural Scientists and Engineers. Amsterdam: Elsevier Science Ltd., 1994.

  5. Arzani, A., A. S. Les, R. L. Dalman, and S. C Shadden. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing. Int. J. Numer. Methods Biomed. Eng. 30(2):280–295, 2014.

  6. Arzani, A., and S.C. Shadden. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Phys. Fluids. 24(8):1901, 2012.

    Google Scholar 

  7. Arzani, A., G. Y. Suh, M. V. McConnell, R. L. Dalman, and S. C. Shadden. Progression of abdominal aortic aneurysm: effect of lagrangian transport and hemodynamic parameters. In: ASME 2013 Summer Bioengineering Conference, pp. V01AT01A004--V01AT01A004, 2013.

  8. Astorino, M., J. Hamers, S. C. Shadden, and J. Gerbeau. A robust and efficient valve model based on resistive immersed surfaces. Int. J. Numer. Methods Biomed. Eng. 28(9):937–959, 2012.

    PubMed  Google Scholar 

  9. Avrahami, I., M. Rosenfeld, and S. Einav. The hemodynamics of the berlin pulsatile VAD and the role of its MHV configuration. Ann. Biomed. Eng. 34(9):1373–1388, 2006.

    PubMed  Google Scholar 

  10. Bächler, P., N. Pinochet, J. Sotelo, G. Crelier, P. Irarrazaval, C. Tejos, and S. Uribe. Assessment of normal flow patterns in the pulmonary circulation by using 4d magnetic resonance velocity mapping. Magn. Reson. Imaging 31(2):178–188, 2013.

    PubMed  Google Scholar 

  11. Basciano, C., C. Kleinstreuer, S. Hyun, and E. A. Finol. A relation between near-wall particle-hemodynamics and onset of thrombus formation in abdominal aortic aneurysms. Ann. Biomed. Eng. 39(7):2010–2026, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bellofiore, A., and N. J. Quinlan. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann. Biomed. Eng. 39(9):2417–2429, 2011.

    PubMed  Google Scholar 

  13. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35(12):1533–1540, 2002.

    CAS  PubMed  Google Scholar 

  14. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2):125–134, 2000.

    CAS  PubMed  Google Scholar 

  15. Bockman, M. D., A. P. Kansagra, S. C. Shadden, E. C. Wong, and A. L. Marsden. Fluid mechanics of mixing in the vertebrobasilar system: comparison of simulation and MRI. Cardiovasc. Eng. Technol. 3(4):450–461, 2012.

    Google Scholar 

  16. Bogren, H. G., and M. H. Buonocore. 4d magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J. Magn. Reson. Imaging 10(5):861–869, 1999.

    CAS  PubMed  Google Scholar 

  17. Bogren, H. G., M. H. Buonocore, and R. J. Valente. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J. Magn. Reson. Imaging 19(4):417–427, 2004.

    Google Scholar 

  18. Bolger, A. F., E. Heiberg, M. Karlsson, L. Wigström, J. Engvall, A. Sigfridsson, T. Ebbers, J. P. E. Kvitting, C. J. Carlhäll, and B. Wranne. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9(5):741–747, 2007.

    PubMed  Google Scholar 

  19. Born, S., M. Pfeifle, M. Markl, M. Gutberlet, and G. Scheuermann. Visual analysis of cardiac 4d MRI blood flow using line predicates. IEEE Trans. Vis. Comput. Graph. 19(6):900–912, 2013.

    PubMed  Google Scholar 

  20. Buchanan, J. R., and C. Kleinstreuer. Simulation of particle-hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses. J. Biomech. Eng. 120(4):446–454, 1998.

    PubMed  Google Scholar 

  21. Buchanan, J. R., C. Kleinstreuer, S. Hyun, and G. A. Truskey. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J. Biomech. 36(8):1185–1196, 2003.

    CAS  PubMed  Google Scholar 

  22. Buchanan, Jr., J. R. C. Kleinstreuer, and J. K. Comer. Rheological effects on pulsatile hemodynamics in a stenosed tube. Comput. Fluids 29(6):695–724, 2000.

    Google Scholar 

  23. Buonocore, M. H. Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn. Reson. Med. 40(2):210–226, 1998.

    CAS  PubMed  Google Scholar 

  24. Buonocore, M. H., and H. G. Bogren. Analysis of flow patterns using MRI. Int. J. Card. Imaging 15(2):99–103, 1999.

    CAS  Google Scholar 

  25. Butty, V. D., K. Gudjonsson, P. Buchel, V. B. Makhijani, Y. Ventikos, and D. Poulikakos. Residence times and basins of attraction for a realistic right internal carotid artery with two aneurysms. Biorheology 39(3):387–393, 2002.

    CAS  PubMed  Google Scholar 

  26. Cao, J., and S. E. Rittgers. Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries. Ann. Biomed. Eng. 26(2):190–199, 1998.

    CAS  PubMed  Google Scholar 

  27. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford: Oxford University Press, 2012.

    Google Scholar 

  28. Carr, I. A., N. Nemoto, R. S. Schwartz, and S. C. Shadden. Size-dependent predilections of cardiogenic embolic transport. Am. J. Physiol. Heart Circ. Physiol. 305(5):H732–H739, 2013.

    CAS  PubMed  Google Scholar 

  29. Charonko, J. J., R. Kumar, K. Stewart, W. C. Little, and P. P. Vlachos. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41(5):1049–1061, 2013.

    PubMed  Google Scholar 

  30. Clift, R., J. R. Grace, and M. E. Weber. Bubbles, Drops, and Particles. New York, NY: Dover, 2005.

  31. Cookson, A. N., D. J. Doorly, and S. J. Sherwin. Mixing through stirring of steady flow in small amplitude helical tubes. Ann. Biomed. Eng. 37(4):710–721, 2009.

    CAS  PubMed  Google Scholar 

  32. Cookson, A. N., D. J. Doorly, and S. J. Sherwin. Using coordinate transformation of navier-stokes equations to solve flow in multiple helical geometries. J. Comput. Appl. Math. 234(7):2069–2079, 2010.

    Google Scholar 

  33. De Gruttola, S., K. Boomsma, and D. Poulikakos. Computational simulation of a non-newtonian model of the blood separation process. Artif. Org. 29(12):949–959, 2005.

    Google Scholar 

  34. De Tullio, M. D., A. Cristallo, E. Balaras, and R. Verzicco. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622:259–290, 2009.

    Google Scholar 

  35. De Tullio, M. D., J. Nam, G. Pascazio, E. Balaras, and R. Verzicco. Computational prediction of mechanical hemolysis in aortic valved prostheses. Eur. J. Mech. B 35:47–53, 2012.

    Google Scholar 

  36. DePaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. Vasc. Biol. 12(11):1254–7, 1992.

    CAS  Google Scholar 

  37. Deplano, V., Y. Knapp, L. Bailly, and E. Bertrand. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. J. Biomech. 47(6):1262–1269, 2014.

    PubMed  Google Scholar 

  38. Doorly, D. J., S. J. Sherwin, P. T. Franke, and J. Peiró. Vortical flow structure identification and flow transport in arteries. Comput. Methods Biomech. Biomed. Eng. 5(3):261–273, 2002.

    CAS  Google Scholar 

  39. Dumont, K., J. Vierendeels, R. Kaminsky, G. Van Nooten, P. Verdonck, and D. Bluestein. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129(4):558–565, 2007.

    PubMed  Google Scholar 

  40. Duvernois, V., A. L. Marsden, and S. C. Shadden. Lagrangian analysis of hemodynamics data from FSI simulation. Int. J. Numer. Methods Biomed. Eng. 29(4):445–461, 2013.

    PubMed  Google Scholar 

  41. Ehrlich, L. W., and M. H. Friedman. Particle paths and stasis in unsteady flow through a bifurcation. J. Biomech. 10(9):561–568, 1977.

    CAS  PubMed  Google Scholar 

  42. Eriksson, J., C. J. Carlhall, P. Dyverfeldt, J. Engvall, A. F. Bolger, and T. Ebbers. Semi-automatic quantification of 4d left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12(9):12, 2010.

    Google Scholar 

  43. Espa, S., M. G. Badas, S. Fortini, G. Querzoli, and A. Cenedese. A lagrangian investigation of the flow inside the left ventricle. Eur. J. Mech. B 35:9–19, 2012.

    Google Scholar 

  44. Fabbri, D., Q. Long, S. Das, and M. Pinelli. Computational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density. Biomech. Model. Mechanobiol. 13(2):289–302, 2014.

    PubMed Central  PubMed  Google Scholar 

  45. Falahatpisheh, A., and A. Kheradvar. High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: from performance to validation. Eur. J. Mech. B 35:2–8, 2012.

    Google Scholar 

  46. Filipovic, N., and H. Schima. Numerical simulation of the flow field within the aortic arch during cardiac assist. Artif. Org. 35(4):E73–E83, 2011.

    Google Scholar 

  47. Freund, J. B. Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46:67–95, 2014.

    Google Scholar 

  48. Frydrychowicz, A., R. Arnold, D. Hirtler, C. Schlensak, A. F. Stalder, J. Hennig, M. Langer, and M. Markl. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. J. Cardiovasc. Magn. Reson. 10(1):30, 2008.

    PubMed Central  PubMed  Google Scholar 

  49. Fyrenius, A., L. Wigström, T. Ebbers, M. Karlsson, J. Engvall, and A. F. Bolger. Three dimensional flow in the human left atrium. Heart 86(4):448–455, 2001.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Gambaruto, A. M., A. Moura, and A. Sequeira. Topological flow structures and stir mixing for steady flow in a peripheral bypass graft with uncertainty. Int. J. Numer. Methods Biomed. Eng. 26(7):926–953, 2010.

    Google Scholar 

  51. Gatignol, R. The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. Journal de Mecanique Theorique et Appliquee, 2(2):143–160, 1983.

    Google Scholar 

  52. Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. 103(16):6305–6308, 2006.

    CAS  Google Scholar 

  53. Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. Int. J. Artif. Org. 13(5):300–306, 1990.

    CAS  Google Scholar 

  54. Govindarajan, V., H. S. Udaykumar, L. H. Herbertson, S. Deutsch, K. B Manning, and K. B. Chandran. Impact of design parameters on bi-leaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 18(5):535, 2009.

    PubMed Central  PubMed  Google Scholar 

  55. Grigioni, M., C. Daniele, U. Morbiducci, G. D’Avenio, G. Di Benedetto, and V. Barbaro. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif. Org. 28(5):467–475, 2004.

    Google Scholar 

  56. Grigioni, M., C. Daniele, U. Morbiducci, C. Del Gaudio, G. D’Avenio, A. Balducci, and V. Barbaro. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. 38(7):1375–1386, 2005.

    PubMed  Google Scholar 

  57. Grigioni, M., U. Morbiducci, G. D’Avenio, G. Di Benedetto, and C. Del Gaudio. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model. Mechanobiol. 4(4):249–260, 2005.

    PubMed  Google Scholar 

  58. Gundert, T. J., S. C. Shadden, A. R. Williams, B. K. Koo, J. A. Feinstein, and J. F. LaDisa, Jr. A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models. Ann. Biomed. Eng. 39(5):1423–1437, 2011.

    PubMed  Google Scholar 

  59. Hardman, D., B. J. Doyle, S. I. K. Semple, J. M. J. Richards, D. E. Newby, W. J. Easson, and P. R. Hoskins. On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics. Proc. Inst. Mech. Eng. Part H 227(10):1114–1124, 2013.

    Google Scholar 

  60. Hendabadi, S., J. Bermejo, Y. Benito, R. l Yotti, F. Fernández-Avilés, J. C. del Álamo, and S. C Shadden. Topology of blood transport in the human left ventricle by novel processing of doppler echocardiography. Ann. Biomed. Eng. 41(12):2603–2616, 2013.

    PubMed  Google Scholar 

  61. M. D., Hope, S. J. Wrenn, and P. Dyverfeldt. Clinical applications of aortic 4d flow imaging. Curr. Cardiovasc. Imaging Rep. 6(2):128–139, 2013.

    Google Scholar 

  62. Hope, T. A., M. Markl, L. Wigström, M. T. Alley, D. C. Miller, and R. J. Herfkens. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J. Magn. Reson. Imaging 26(6):1471–1479, 2007.

    PubMed  Google Scholar 

  63. Hsu, U. K., and P. J. Lu. Dynamic simulation and hemolysis evaluation of the regurgitant flow over a tilting-disc mechanical heart valve in pulsatile flow. World J. Mech. 3:160, 2013.

    Google Scholar 

  64. Humphrey, J. D. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52:195–200, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Med. Eng. Phys. 22(1):13–27, 2000.

    CAS  Google Scholar 

  66. Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy. Comput. Biol. Med. 31(5):365–384, 2001.

    CAS  PubMed  Google Scholar 

  67. Hyun, S., C. Kleinstreuer, P. W. Longest, and C. Chen. Particle-hemodynamics simulations and design options for surgical reconstruction of diseased carotid artery bifurcations. J. Biomech. Eng. 126(2):188–195, 2004.

    CAS  PubMed  Google Scholar 

  68. Jensen, M. H., G. Paladin, and A. Vulpiani. Dynamical Systems Approach to Turbulence. Cambridge: Cambridge University Press, 2005.

  69. Jin, W., and C. Clark. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD). J. Bbiomech. 26(6):697–707, 1993.

    CAS  Google Scholar 

  70. Karmeshu, J. Entropy Measures, Maximum Entropy Principle and Emerging Applications, Vol. 119. Berlin: Springer, 2003.

  71. Kheradvar, A., J. Kasalko, D. Johnson, and M. Gharib. An in vitro study of changing profile heights in mitral bioprostheses and their influence on flow. ASAIO J. 52(1):34–38, 2006.

    PubMed  Google Scholar 

  72. Kim, M. C., J. H. Nam, and C. S. Lee. Near-wall deposition probability of blood elements as a new hemodynamic wall parameter. Ann. Biomed. Eng. 34(6):958–970, 2006.

    PubMed  Google Scholar 

  73. Kleinstreuer, C., and Y. Feng. Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics—a review. J. Biomech. Eng. 135(2):021008, 2013.

    PubMed  Google Scholar 

  74. Kozerke, S., J. M. Hasenkam, E. M. Pedersen, and P. Boesiger. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3d velocity mapping. J. Magn. Reson. Imaging 13(5):690–698, 2001.

    CAS  PubMed  Google Scholar 

  75. Krishnan, H., C. Garth, J. Guhring, M. A. Gulsun, A. Greiser, and K. I. Joy. Analysis of time-dependent flow-sensitive PC-MRI data. IEEE Trans. Vis. Comput. Graph. 18(6):966–977, 2012.

    Google Scholar 

  76. Krishnan, S., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann. Biomed. Eng. 34(10):1519–1534, 2006.

    CAS  PubMed  Google Scholar 

  77. Kunov, M. J., D. A. Steinman, and C. R. Ethier. Particle volumetric residence time calculations in arterial geometries. J. Biomech. Eng. 118(2):158–164, 1996.

    CAS  PubMed  Google Scholar 

  78. Longest, P. W., and C. Kleinstreuer. Comparison of blood particle deposition models for non-parallel flow domains. J. Biomech. 36(3):421–430, 2003.

    Google Scholar 

  79. Longest, P. W., and C. Kleinstreuer. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses. J. Biomech. Eng. 125(5):671–681, 2003.

    PubMed  Google Scholar 

  80. Longest, P. W., and C. Kleinstreuer. Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut. Med. Eng. Phys. 25(10):843–858, 2003.

    Google Scholar 

  81. Longest, P. W., C. Kleinstreuer, and J. P. Archie, Jr. Particle hemodynamics analysis of miller cuff arterial anastomosis. J. Vasc. Surg. 38(6):1353–1362, 2003.

    PubMed  Google Scholar 

  82. Longest, P. W., C. Kleinstreuer, and J. R. Buchanan. Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33(4):577–601, 2004.

    Google Scholar 

  83. Longest, P. W., C. Kleinstreuer, and J. R. Buchanan, Jr. A new near-wall residence time model applied to three arterio-venous graft end-to-side anastomoses. Comput. Methods Biomech. Biomed. Eng. 4(5):379–397, 2001.

    Google Scholar 

  84. Longest, P. W., C. Kleinstreuer, and A. Deanda. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Ann. Biomed. Eng. 33(12):1752–1766, 2005.

    PubMed  Google Scholar 

  85. Longest, P. W., C. Kleinstreuer, G. A. Truskey, and J. R. Buchanan. Relation between near-wall residence times of monocytes and early lesion growth in the rabbit aorto-celiac junction. Ann. Biomed. Eng. 31(1):53–64, 2003.

    PubMed  Google Scholar 

  86. Lonyai, A., A. M. Dubin, J. A. Feinstein, C. A. Taylor, and S. C. Shadden. New insights into pacemaker lead-induced venous occlusion: simulation-based investigation of alterations in venous biomechanics. Cardiovasc. Eng. 10(2):84–90, 2010.

    PubMed  Google Scholar 

  87. Maiti, S., K. Chaudhury, D. DasGupta, and S. Chakraborty. Alteration of chaotic advection in blood flow around partial blockage zone: role of hematocrit concentration. J. Appl. Phys. 113(3):034701, 2013.

    Google Scholar 

  88. Markl, M., M. T. Draney, M. D. Hope, J. M. Levin, F. P. Chan, M. T. Alley, N. J. Pelc, and R. J Herfkens. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J. Comput. Assist. Tomogr. 28(4):459–468, 2004.

  89. Markl, M., M. T. Draney, D. C. Miller, J. M. Levin, E. E. Williamson, N. J. Pelc, D. H. Liang, and R. J. Herfkens. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130(2):456–463, 2005.

    PubMed  Google Scholar 

  90. Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4d velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13(1):1–22, 2011.

    Google Scholar 

  91. Marsden, A. L., V. M. Reddy, S. C. Shadden, F. P. Chan, C. A. Taylor, and J. A. Feinstein. A new multiparameter approach to computational simulation for fontan assessment and redesign. Congenit. Heart Dis. 5(2):104–117, 2010.

    PubMed  Google Scholar 

  92. Marshall, I. Targeted particle tracking in computational models of human carotid bifurcations. J. Biomech. Eng. 133(12):124501, 2011.

    PubMed  Google Scholar 

  93. Massai, D., G. Soloperto, D. Gallo, X. Y. Xu, and U. Morbiducci. Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. Eur. J. Mech. B 35:92–101, 2012.

    Google Scholar 

  94. Mathew, G., I. Mezić, and L. Petzold. A multiscale measure for mixing. Physica D 211(1):23–46, 2005.

    CAS  Google Scholar 

  95. Maxey, M. R., and J. J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4):883–889, 1983.

    Google Scholar 

  96. McLaughlin, J. B. The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech. 226:249–265, 1993.

    Google Scholar 

  97. Michaelides, E. E. Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops–The Freeman Scholar Lecture. J. Fluids Eng. 125(2):209–238, 2003.

    Google Scholar 

  98. Moffatt, H. K., and A. Tsinober. Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24(1):281–312, 1992.

    Google Scholar 

  99. Morbiducci, U., D. Gallo, D. Massai, R. Ponzini, M. A. Deriu, L. Antiga, A. Redaelli, and F. M. Montevecchi. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J. Biomech. 44(13):2427–2438, 2011.

    PubMed  Google Scholar 

  100. Morbiducci, U., D. Gallo, R. Ponzini, D. Massai, L. Antiga, F. M. Montevecchi, and A. Redaelli. Quantitative analysis of bulk flow in image-based hemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann. Biomed. Eng. 38(12):3688–3705, 2010.

    PubMed  Google Scholar 

  101. Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40(3):519–534, 2007.

    PubMed  Google Scholar 

  102. Morbiducci, U., R. Ponzini, M. Nobili, D. Massai, F. M. Montevecchi, D. Bluestein, and A. Redaelli. Blood damage safety of prosthetic heart valves. shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J. Biomech. 42(12):1952–1960, 2009.

    PubMed  Google Scholar 

  103. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37(3):516–531, 2009.

    PubMed  Google Scholar 

  104. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10(3):339–355, 2011.

    PubMed  Google Scholar 

  105. Nazemi, M., and C. Kleinstreuer. Analysis of particle trajectories in aortic artery bifurcations with stenosis. J. Biomech. Eng. 111(4):311–315, 1989.

    CAS  PubMed  Google Scholar 

  106. Nobili, J., M. and Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. (American Society for Artificial Internal Organs: 1992), 54(1):64, 2008.

  107. Osorio, A. F., R. Osorio, A. Ceballos, R. Tran, W. Clark, E. A. Divo, I. R. Argueta-Morales, Alain J. Kassab, and W. M DeCampli. Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk. Comput. Methods Biomech. Biomed. Eng. 16(6):622–638, 2011.

    PubMed  Google Scholar 

  108. Parashar, A., R. Singh, P. K. Panigrahi, and K. Muralidhar. Chaotic flow in an aortic aneurysm. J. Appl. Phys. 113(21):214909, 2013.

    Google Scholar 

  109. Peng, Y., Y. Wu, X. Tang, W. Liu, D. Chen, T. Gao, Y. Xu, and Y. Zeng. Numerical simulation and comparative analysis of flow field in axial blood pumps. Comput. Methods Biomech. Biomed. Eng. 17(7):723–727, 2012.

    PubMed  Google Scholar 

  110. Perktold, K. On the paths of fluid particles in an axisymmetrical aneurysm. J. Biomech. 20(3):311–317, 1987.

    CAS  PubMed  Google Scholar 

  111. Perktold, K., and D. Hilbert. Numerical simulation of pulsatile flow in a carotid bifurcation model. J. Biomed. Eng. 8(3):193–199, 1986.

    CAS  PubMed  Google Scholar 

  112. Perktold, K., T. Kenner, D. Hilbert, B. Spork, and H. Florian. Numerical blood flow analysis: arterial bifurcation with a saccular aneurysm. Basic Res. Cardiol. 83(1):24–31, 1988.

    CAS  PubMed  Google Scholar 

  113. Perktold, K., R. Peter, and M. Resch. Pulsatile non-newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26(6):1011–1030, 1988.

    Google Scholar 

  114. Phillips, R. J., R. C. Armstrong, R. A. Brown, A. L. Graham, and J. R. Abbott. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4:30–40, 1992.

    CAS  Google Scholar 

  115. Prosi, M., K. Perktold, and H. Schima. Effect of continuous arterial blood flow in patients with rotary cardiac assist device on the washout of a stenosis wake in the carotid bifurcation: a computer simulation study. J. Biomech. 40(10):2236–2243, 2007.

    PubMed  Google Scholar 

  116. Purvis, Jr., N. B., and T. D. Giorgio. The effects of elongational stress exposure on the activation and aggregation of blood platelets. Biorheology 28(5):355, 1991.

    PubMed  Google Scholar 

  117. Raz, S., S. Einav, Y. Alemu, and D. Bluestein. DPIV prediction of flow induced platelet activation-comparison to numerical predictions. Ann. Biomed. Eng. 35(4):493–504, 2007.

    PubMed  Google Scholar 

  118. Schelin, A. B., Gy Károlyi, A. P. S. De Moura, N. A. Booth, and C. Grebogi. Chaotic advection in blood flow. Phys. Rev. E 80(1):016213, 2009.

  119. Schelin, A. B., György Károlyi, A. P. S. De Moura, N. Booth, and C. Grebogi. Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow?. Comput. Biol. Med. 42(3):276–281, 2012.

    PubMed  Google Scholar 

  120. Schelin, A. B., György Károlyi, Alessandro P. S. De Moura, N. A Booth, and C. Grebogi. Fractal structures in stenoses and aneurysms in blood vessels. Philos. Trans. R. Soc. A 368(1933):5605–5617, 2010.

    Google Scholar 

  121. Schima, H., B. Lackner, M. Prosi, and K. Perktold. Numerical simulation of carotid hemodynamics in patients with rotary blood pump cardiac assist. The International Journal of Artif. Org. 26(2):152–160, 2003.

    CAS  Google Scholar 

  122. Sengupta, D., A. M. Kahn, J. C. Burns, S. Sankaran, S. C. Shadden, and A. L. Marsden. Image-based modeling of hemodynamics in coronary artery aneurysms caused by kawasaki disease. Biomech. Model. Mechanobiol. 11(6):915–932, 2012.

    PubMed  Google Scholar 

  123. Seo, J. H., and R. Mittal. Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25(11):110801, 2013.

    Google Scholar 

  124. Shadden, S. C. Lagrangian coherent structures. In Transport and Mixing in Laminar Flows: from Microfluidics to Oceanic Currents. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011.

    Google Scholar 

  125. Shadden, S. C., M. Astorino, and J. F. Gerbeau. Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20:017512–1, 2010.

    PubMed  Google Scholar 

  126. Shadden, S. C., J. O. Dabiri, and J. E. Marsden. Lagrangian analysis of fluid transport in empirical vortex rings. Phys. Fluids 18:047105, 2006.

    Google Scholar 

  127. Shadden, S. C., and S. Hendabadi. Potential fluid mechanic pathways of platelet activation. Biomech. Model. Mechanobiol. 12(3):467–474, 2013.

    PubMed Central  PubMed  Google Scholar 

  128. Shadden, S. C., K. Katija, M. Rosenfeld, J. E. Marsden, and J. O. Dabiri. Transport and stirring induced by vortex formation. J. Fluid Mech. 593:315–331, 2007.

    Google Scholar 

  129. Shadden, S. C., F. Lekien, and J. E. Marsden. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212(3–4):271–304, 2005.

    Google Scholar 

  130. Shadden, S. C., and C. A. Taylor. Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36:1152–1162, 2008.

    PubMed  Google Scholar 

  131. Siegel, J. M., J. N. Oshinski, R. I. Pettigrew, and D. N. Ku. Comparison of phantom and computer-simulated mr images of flow in a convergent geometry: implications for improved two-dimensional MR angiography. J. Magn. Reson. Imaging 5(6):677–683, 1995.

    PubMed  Google Scholar 

  132. Simon, H. A., L. Ge, F. Sotiropoulos, and A. P. Yoganathan. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Ann. Biomed. Eng. 38(11):3295–3310, 2010.

    PubMed Central  PubMed  Google Scholar 

  133. Sirois, E., and W. Sun. Computational evaluation of platelet activation induced by a bioprosthetic heart valve. Artif. Org. 35(2):157–165, 2011.

    Google Scholar 

  134. Smadi, O., I. Hassan, P. Pibarot, and L. Kadem. Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve. J. Biomech. 43(8):1565–1572, 2010.

    CAS  PubMed  Google Scholar 

  135. Song, X., A. L. Throckmorton, H. G. Wood, J. F. Antaki, and D. B. Olsen. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif. Org. 27(10):938–941, 2003.

    Google Scholar 

  136. Song, X., A. L Throckmorton, H. G. Wood, J. F Antaki, and D. B Olsen. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics. J. Fluids Eng. 126(3):410–418, 2004.

    Google Scholar 

  137. Steinman, D. A. Simulated pathline visualization of computed periodic blood flow patterns. J. Biomech. 33(5):623–628, 2000.

  138. Steinman, D. A., and B. K. Rutt. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn. Reson. Med. 39(4):635–641, 1998.

    CAS  PubMed  Google Scholar 

  139. Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47(1):149–159, 2002.

    PubMed  Google Scholar 

  140. Suh, G. Y., A. S. Les, A. S. Tenforde, S. C. Shadden, R. L. Spilker, J. J. Yeung, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of particle residence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 39:864–883, 2011.

    PubMed Central  PubMed  Google Scholar 

  141. Suh, G. Y., A. S. Tenforde, S. C. Shadden, R. L. Spilker, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Hemodynamic changes in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Eng. 39:2186–2202, 2011.

    PubMed Central  PubMed  Google Scholar 

  142. Tambasco, M., and D. A Steinman. On assessing the quality of particle tracking through computational fluid dynamic models. J. Biomech. Eng. 124(2):166–175, 2002.

  143. Tambasco, M., and D. A. Steinman. Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann. Biomed. Eng. 31(9):1054–1065, 2003.

    PubMed  Google Scholar 

  144. Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38(3):1188–1203, 2010.

    PubMed  Google Scholar 

  145. Töger, J., M. Kanski, M. Carlsson, S. J. Kovács, G. Söderlind, H. Arheden, and E. Heiberg. Vortex ring formation in the left ventricle of the heart: analysis by 4d flow MRI and lagrangian coherent structures. Ann. Biomed. Eng. 40(12):2652–2662, 2012.

    PubMed  Google Scholar 

  146. Tsao, R., S. A. Jones, D. P. Giddens, C. K. Zarins, and S. Glagov. An automated three-dimensional particle tracking technique for the study of modeled arterial flow fields. J. Biomech. Eng. 117(2):211–218, 1995.

    CAS  PubMed  Google Scholar 

  147. Turitto, V. T., A. M. Benis, and E. F. Leonard. Platelet diffusion in flowing blood. Ind. Eng. Chem. Fundam. 11(2):216–223, 1972.

    CAS  Google Scholar 

  148. Vétel, J., A. Garon, and D. Pelletier. Lagrangian coherent structures in the human carotid artery bifurcation. Exp. Fluids 46(6):1067–1079, 2009.

    Google Scholar 

  149. Wada, S., and T. Karino. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann. Biomed. Eng. 30(6):778–791, 2002.

    PubMed  Google Scholar 

  150. Wen, J., T. Zheng, W. Jiang, X. Deng, and Y. Fan. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J. 57(5):399–406, 2011.

    PubMed  Google Scholar 

  151. Wigström, L., T. Ebbers, A. Fyrenius, M. Karlsson, J. Engvall, B. Wranne, and A. F. Bolger. Particle trace visualization of intracardiac flow using time-resolved 3d phase contrast MRI. Magn. Reson. Med. 41(4):793–799, 1999.

    PubMed  Google Scholar 

  152. Wu, J., J. F. Antaki, T. A. Snyder, W. R. Wagner, H. S. Borovetz, and B. E. Paden. Design optimization of blood shearing instrument by computational fluid dynamics. Artif. Org. 29(6):482–489, 2005.

    Google Scholar 

  153. Wu, J., B. E. Paden, H. S. Borovetz, and J. F. Antaki. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artif. Org. 34(5):402–411, 2010.

    Google Scholar 

  154. Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device thrombogenicity emulator (DTE)- design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43(12):2400–2409, 2010.

    PubMed Central  PubMed  Google Scholar 

  155. Xu, Z., N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, and M. Alber. Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5(4):769–779, 2009.

    CAS  Google Scholar 

  156. Yang, W., J. A. Feinstein, S. C Shadden, I. E. Vignon-Clementel, and A. L. Marsden. Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation. J. Biomech. Eng. 135(1):011002, 2013.

    PubMed  Google Scholar 

  157. Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012.

    PubMed  Google Scholar 

  158. Yin, W., Y. Alemu, K. Affeld, J. Jesty, and D. Bluestein. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32(8):1058–1066, 2004.

    PubMed  Google Scholar 

  159. Young, A. A., and J. L. Prince. Cardiovascular magnetic resonance: deeper insights through bioengineering. Annu. Rev. Biomed. Eng. 15:433–461, 2013.

    CAS  PubMed  Google Scholar 

  160. Yun, B. M., J. Wu, H. A. Simon, S. Arjunon, F. Sotiropoulos, C. K. Aidun, and A. P. Yoganathan. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40(7):1468–1485, 2012.

    PubMed  Google Scholar 

  161. Zarins, C. K., and S. Glagov. Vascular Surgery Principles and Practice, Chapter Pathophysiology of Human Atherosclerosis. New York, NY: McGraw-Hill, 1994.

  162. Zheng, T., W. Wang, W. Jiang, X. Deng, and Y. Fan. Assessing hemodynamic performances of small diameter helical grafts: transient simulation. J. Mech. Med. Biol. 12(01), 2012.

Download references

Acknowledgments

The authors acknowledge support of the NIH National Heart, Lung, and Blood Institute (Grant No. HL108272) and the National Science Foundation (Grant No. 1354541, 1358118, 1407834).

Conflict of interest

The authors do not have conflicts of interest relevant to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn C. Shadden.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadden, S.C., Arzani, A. Lagrangian Postprocessing of Computational Hemodynamics. Ann Biomed Eng 43, 41–58 (2015). https://doi.org/10.1007/s10439-014-1070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1070-0

Keywords

Navigation