Skip to main content
Log in

Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding the mechanical behavior of proximal pulmonary arteries (PAs) is crucial to evaluating pulmonary vascular function and right ventricular afterload. Early and current efforts focus on these arteries’ histological changes, in vivo pressure–diameter behavior and mechanical properties under in vitro mechanical testing. However, the in vivo stretch and stress states remain poorly characterized. To further understand the mechanical behavior of the proximal PAs under physiological conditions, this study computed the residual stretch and the in vivo circumferential stretch state in the main pulmonary arteries in both control and hypertensive calves by using in vitro and in vivo artery geometry data, and modeled the impact of residual stretch and arterial remodeling on the in vivo circumferential stretch distribution and collagen engagement in the main pulmonary artery. We found that the in vivo circumferential stretch distribution in both groups was nonuniform across the vessel wall with the largest stretch at the outer wall, suggesting that collagen at the outer wall would engage first. It was also found that the circumferential stretch was more uniform in the hypertensive group, partially due to arterial remodeling that occurred during their hypoxic treatment, and that their onset of collagen engagement occurred at a higher pressure. It is concluded that the residual stretch and arterial remodeling have strong impact on the in vivo stretch state and the collagen engagement and thus the mechanical behavior of the main pulmonary artery in calves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Burton, A. C. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34:619–642, 1954.

    PubMed  CAS  Google Scholar 

  2. Cacho, F., P. J. Elbischger, J. F. Rodríguez, M. Doblaré, and G. A. Holzapfel. A constitutive model for fibrous tissues considering collagen fiber crimp. Int. J. Nonlinear Mech. 42:391–402, 2007.

    Article  Google Scholar 

  3. Canham, P. B., H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen. Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovasc. Res. 23:973–982, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Carew, T. E., R. N. Vaishnav, and D. J. Patel. Compressibility of the arterial wall. Circ. Res. 23:61–68, 1968.

    Article  PubMed  CAS  Google Scholar 

  5. Chuong, C. J., and Y. C. Fung. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17:35–40, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108:189–192, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Clark, J. M., and S. Glagov. Transmural organization of the arterial media. The lamellar unit revisited. Arterioscler. Thromb. Vasc. Biol. 5:19–34, 1985.

    Article  CAS  Google Scholar 

  8. Dingemans, K. P., P. Teeling, J. H. Lagendijk, and A. E. Becker. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258:1–14, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Durmowicz, A. G., and K. R. Stenmark. Mechanisms of structural remodeling in chronic pulmonary hypertension. Pediatr. Rev. 20:91–102, 1999.

    Google Scholar 

  10. Dyer, K. L., C. J. Lanning, B. B. Das, D. D. Ivy, and R. Shandas. Development and validation of a non-invasive color M-mode tissue Doppler imaging technique for measuring pulmonary artery compliance: in vitro and clinical studies. J. Am. Soc. Echocardiogr. 19:403–412, 2006.

    Article  PubMed  Google Scholar 

  11. Elbischger, P. H., H. Bischof, P. Regitnig, and G. A. Holzapfel. Automatic analysis of collagen fiber orientation in the outermost layer of human arteries. Pattern Anal. Appl. 7:269–284, 2004.

    Google Scholar 

  12. Finlay, H. M., L. McCullough, and P. B. Canham. Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vasc. Res. 32:301–312, 1995.

    PubMed  CAS  Google Scholar 

  13. Fung, Y. C. Biodynamics: Circulation. New York: Springer, 1984.

    Google Scholar 

  14. Fung, Y. C. What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19:237–249, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Fung, Y. C., and S. Q. Liu. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65:1340–1349, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Fung, Y. C., and S. Q. Liu. Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70:2455–2470, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Fung, Y. C., and S. Q. Liu. Strain distribution in small blood vessels with zero-stress state taken into consideration. Am. J. Physiol. Heart Circ. Physiol. 262:H544–H552, 1992.

    CAS  Google Scholar 

  18. Gan, C. T. J., J. W. Lankhaar, N. Westerhof, J. T. Marcus, A. Becker, J. W. R. Twisk, A. Boonstra, P. E. Postmus, and A. Vonk-Noordegraaf. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132:1906–1912, 2007.

    Article  PubMed  Google Scholar 

  19. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  PubMed  Google Scholar 

  20. Grant, B. J. B., and B. B. Lieber. Clinical significance of pulmonary arterial input impedance. Eur. Respir. J. 9:2196–2199, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Grant, B. J. B., L. J. Paradowski, and J. M. Fitzpatrick. Effect of perivascular electromagnetic flow probes on pulmonary hemodynamics. J. Appl. Physiol. 65:1885–1890, 1988.

    PubMed  CAS  Google Scholar 

  22. Greenwald, S. E., J. E. Moore, A. Rachev, T. P. C. Kane, and J. J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119:438–444, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Guo, X., Y. Kono, R. Mattrey, and G. S. Kassab. Morphometry and strain distribution of the C57BL/6 mouse aorta. Am. J. Physiol. Heart Circ. Physiol. 283:H1829–H1837, 2002.

    PubMed  CAS  Google Scholar 

  24. Guo, X., X. Lu, and G. S. Kassab. Transmural strain distribution in the blood vessel wall. Am. J. Physiol. Heart Circ. Physiol. 288:H881–H886, 2005.

    Article  PubMed  CAS  Google Scholar 

  25. Han, H. C., and Y. C. Fung. Longitudinal strain of canine and porcine aortas. J. Biomech. 28:637–641, 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Han, H. C., and Y. C. Fung. Direct measurement of transverse residual strains in aorta. Am. J. Physiol. Heart Circ. Physiol. 39:H750–H759, 1996.

    Google Scholar 

  27. Hatch, J. P. Using statistical equivalence testing in clinical biofeedback research. Biofeedback Self-Regul. 21:105–119, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Hayashi, K., and T. Naiki. Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J. Mech. Behav. Biomed. Mater. 2:3–19, 2009.

    Article  PubMed  Google Scholar 

  29. Holzapfel, G. A. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238:290–302, 2006.

    Article  PubMed  Google Scholar 

  30. Holzapfel, G. A. Collagen in arterial walls: biomechanical aspects. In: Collagen. Structure and Mechanics, Chapter 11, edited by F. P. Heidelberg. Berlin: Springer, 2008, pp. 285–324.

  31. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48, 2000.

    Article  Google Scholar 

  32. Holzapfel, G. A., G. Sommer, M. Auer, P. Regitnig, and R. W. Ogden. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35:530–545, 2007.

    Article  PubMed  Google Scholar 

  33. Huang, W., Y. P. Sher, D. Delgado-West, J. T. Wu, K. Peck, and Y. C. Fung. Tissue remodeling of rat pulmonary artery in hypoxic breathing. I. Changes of morphology, zero-stress state, and gene expression. Ann. Biomed. Eng. 29:535–551, 2001.

    Article  PubMed  CAS  Google Scholar 

  34. Humphrey, J. D. Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. New York: Springer, 2002.

    Google Scholar 

  35. Hunter, K. S., J. A. Albietz, P. F. Lee, C. J. Lanning, S. R. Lammers, S. H. Hofmeister, P. H. Kao, H. J. Qi, K. R. Stenmark, and R. Shandas. In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J. Appl. Physiol. 108:968–975, 2010.

    Article  PubMed  Google Scholar 

  36. Hunter, K. S., J. K. Gross, C. J. Lanning, K. S. Kirby, K. L. Dyer, D. D. Ivy, and R. Shandas. Noninvasive methods for determining pulmonary vascular function in children with pulmonary arterial hypertension: application of a mechanical oscillator model. Congenit. Heart Dis. 3:106–116, 2008.

    Article  PubMed  Google Scholar 

  37. Hunter, K. S., C. J. Lanning, K. S. Kirby, D. D. Ivy, and R. Shandas. In Vivo pulmonary vascular stiffness obtained from color M-Mode tissue Doppler imaging and pressure measurements predicts clinical outcomes better than indexed pulmonary vascular resistance in pediatric patients with pulmonary arterial hypertension. Circulation 118: S879–S879, 2008.

    Google Scholar 

  38. Hunter, K. S., P. F. Lee, C. J. Lanning, D. D. Ivy, K. S. Kirby, L. R. Claussen, K. C. Chan, and R. Shandas. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am. Heart J. 155:166–174, 2008.

    Article  PubMed  Google Scholar 

  39. Kao, P. H., S. R. Lammers, L. Tian, K. Hunter, K. R. Stenmark, R. Shandas, and H. J. Qi. A microstructurally driven model for pulmonary artery tissue. J. Biomech. Eng. 133:051002, 2011.

    Article  PubMed  Google Scholar 

  40. Kobs, R. W., N. E. Muvarak, J. C. Eickhoff, and N. C. Chesler. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am. J. Physiol. Heart Circ. Physiol. 288:H1209–H1217, 2005.

    Article  PubMed  CAS  Google Scholar 

  41. Lammers, S. R., P. H. Kao, H. J. Qi, K. Hunter, C. Lanning, J. Albietz, S. Hofmeister, R. Mecham, K. R. Stenmark, and R. Shandas. Changes in the structure-function relationship of elastin and its impacts on the proximal pulmonary arterial mechanics of hypertensive calves. Am. J. Physiol. Heart Circ. Physiol. 295:H1451–H1459, 2008.

    Article  PubMed  CAS  Google Scholar 

  42. Lammers, S. R., P. Kao, L. Tian, K. Hunter, Z. VanRheen, J. Albietz, C. Lanning, S. Hoffmeister, s. Miyamoto, T. Kulik, H. J. Qi, R. Shandas, and K. Stenmark. Conduit arteries in small and large mammals express different material property changes in response to hypoxia-induced pulmonary hypertension. In: ATS International Conference, New Orleans, LA, May 14–19, 2010.

  43. Lanir, Y. A structural theory for the homogeneous biaxial stress–strain relationships in flat collagenous tissues. J. Biomech. 12:423–436, 1979.

    Article  PubMed  CAS  Google Scholar 

  44. Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12, 1983.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, S. Q., and Y. C. Fung. Zero-stress states of arteries. J. Biomech. Eng. 110:82–84, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Milnor, W. R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570, 1975.

    Article  PubMed  CAS  Google Scholar 

  47. Milnor, W. R., C. R. Conti, K. B. Lewis, and M. F. O’Rourke. Pulmonary arterial pulse wave velocity and impedance in man. Circ. Res. 25:637–649, 1969.

    Article  PubMed  CAS  Google Scholar 

  48. Rachev, A., and S. E. Greenwald. Residual strains in conduit arteries. J. Biomech. 36:661–670, 2003.

    Article  PubMed  CAS  Google Scholar 

  49. Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.

    Article  PubMed  CAS  Google Scholar 

  50. Rodés-Cabau, J., E. Domingo, A. Román, J. Majó, B. Lara, F. Padilla, I. Anívarro, J. Angel, J. C. Tardif, and J. Soler–Soler. Intravascular ultrasound of the elastic pulmonary arteries: a new approach for the evaluation of primary pulmonary hypertension. Heart 89:311–315, 2003.

    Article  PubMed  Google Scholar 

  51. Rodríguez, J. F., C. Ruiz, M. Doblaré, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008.

    Article  PubMed  Google Scholar 

  52. Sanz, J., M. Kariisa, S. Dellegrottaglie, S. Prat-Gonzalez, M. J. Garcia, V. Fuster, and S. Rajagopalan. Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc. Imaging 2:286–295, 2009.

    Article  PubMed  Google Scholar 

  53. Schmid, F., G. Sommer, M. Rappolt, C. A. J. Schulze-Bauer, P. Regitnig, G. A. Holzapfel, P. Laggner, and H. Amenitsch. In situ tensile testing of human aortas by time-resolved small-angle X-ray scattering. J. Synchrotron Radiat. 12:727–733, 2005.

    Article  PubMed  CAS  Google Scholar 

  54. Spencer, A. J. M. Constitutive theory for strongly anisotropic solids. In: Continuum Theory of the Mechanics of Fiber-Reinforced Composites, CISM Course and Lectures No. 282, International Centre for Mechanical Sciences, Chapter 2, edited by A. J. M. Spencer. Wien, New York: Springer, 1984, pp. 23–82.

  55. Stenmark, K. R., K. A. Fagan, and M. G. Frid. Hypoxia-induced pulmonary vascular remodeling—cellular and molecular mechanisms. Circ. Res. 99:675–691, 2006.

    Article  PubMed  CAS  Google Scholar 

  56. Stenmark, K. R., J. Fasules, D. M. Hyde, N. F. Voelkel, J. Henson, A. Tucker, H. Wilson, and J. T. Reeves. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4300 m. J. Appl. Physiol. 62:821–830, 1987.

    PubMed  CAS  Google Scholar 

  57. Stenmark, K. R., and R. P. Mecham. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu. Rev. Physiol. 59:89–144, 1997.

    Article  PubMed  CAS  Google Scholar 

  58. Stergiopulos, N., S. Vulliemoz, A. Rachev, J. J. Meister, and S. E. Greenwald. Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J. Vasc. Res. 38:237–246, 2001.

    Article  PubMed  CAS  Google Scholar 

  59. Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20:7–17, 1987.

    Article  PubMed  CAS  Google Scholar 

  60. Tian, L., S. R. Lammers, P. H. Kao, M. Reusser, K. R. Stenmark, K. S. Hunter, H. J. Qi, and R. Shandas. Linked opening angle and histological and mechanical aspects of the proximal pulmonary arteries of healthy and pulmonary hypertensive rats and calves. Am. J. Physiol. Heart Circ. Physiol. 301:H1810–H1818, 2011.

    Article  PubMed  CAS  Google Scholar 

  61. Weinberg, C. E., J. R. Hertzberg, D. D. Ivy, K. S. Kirby, K. C. Chan, L. Valdes-Cruz, and R. Shandas. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurements in children with pulmonary hypertension: a new method for evaluating reactivity—in vitro and clinical studies. Circulation 110:2609–2617, 2004.

    Article  PubMed  Google Scholar 

  62. Wuyts, F. L., V. J. Vanhuyse, G. J. Langewouters, W. F. Decraemer, E. R. Raman, and S. Buyle. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40:1577–1597, 1995.

    Article  PubMed  CAS  Google Scholar 

  63. Zeller, P. J., and T. C. Skalak. Contribution of individual structural components in determining the zero-stress state in small arteries. J. Vasc. Res. 35:8–17, 1998.

    Article  PubMed  CAS  Google Scholar 

  64. Zuckerman, B. D., E. C. Orton, K. R. Stenmark, J. A. Trapp, J. R. Murphy, P. R. Coffeen, and J. T. Reeves. Alteration of the pulsatile load in the high-altitude calf model of pulmonary hypertension. J. Appl. Physiol. 70:859–868, 1991.

    PubMed  CAS  Google Scholar 

  65. Zulliger, M. A., P. Fridez, K. Hayashi, and N. Stergiopulos. A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37:989–1000, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the National Institutes of Health (T32-HL072738, K24-HL081506, K25-HL094749, and SCCOR-HL084923).

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall S. Hunter.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Lammers, S.R., Kao, P.H. et al. Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures. Ann Biomed Eng 40, 1419–1433 (2012). https://doi.org/10.1007/s10439-012-0509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0509-4

Keywords

Navigation