Skip to main content
Log in

Rapid Platelet Accumulation Leading to Thrombotic Occlusion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Platelet thrombosis under arterial conditions remains a large clinical problem. Previous in vitro experiments have concentrated on early adherence without thrombotic occlusion. We have developed a controllable hemodynamic system that creates intravascular thrombosis to occlusion. Lightly heparinized (3.5 USP units/mL), whole, porcine blood is perfused through a 1.5 mm inner diameter, tubular, collagen-coated stenosis. The microscopic growth of thrombus is optically recorded using a high resolution CCD camera. Occlusive thrombus is examined using microcomputed tomography and histology. Thrombus consistently formed in the throat of the stenosis where wall shear rates were greatest. Rapid platelet accumulation (RPA) reached rates as high as 13.7 μmμm−2 min−1. Total occlusion of flow occurred after 17 ± 2.6 min (n = 6). The average thrombus volume accumulation of 7.8 ± 3.5 μm3 μm2 min−1 occurred under very high wall shear rates exceeding 100,000 s−1. Significant volumes of thrombus did not form until 7.6 ± 3.6 min after the onset of flow, a delay consistent with activation of adherent mural platelets. Platelets did not accumulate with large volume for normal wall shear rates <2000 s−1. Very high wall shear rates stimulate the capture of millions of circulating platelets with exposure times <2 ms in an arterial stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alevriadou, B. R., J. L. Moake, N. A. Turner, Z. M. Ruggeri, B. J. Folie, M. D. Phillips, A. B. Schreiber, M. E. Hrinda, and L. V. McIntire. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of Von Willebrand factor binding to platelets. Blood 81:1263–1276, 1993.

    PubMed  CAS  Google Scholar 

  2. Badimon, L., and J. J. Badimon. Mechanisms of arterial thrombosis in nonparallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall. Experimental study in the pig model. J. Clin. Investig. 84:1134–1144, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Badimon, L., J. J. Badimon, A. Galvez, J. H. Chesebro, and V. Fuster. Influence of arterial damage and wall shear rate on platelet deposition. Ex vivo study in a swine model. Arterioscler. Thromb. Vasc. Biol. 6:312–320, 1986.

    CAS  Google Scholar 

  4. Bark, D. J., and D. N. Ku. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43:2970–2977, 2010.

    Article  PubMed  Google Scholar 

  5. Barstad, R. M., P. Kierulf, and K. S. Sakariassen. Collagen induced thrombus formation at the apex of eccentric stenoses—a time course study with non-anticoagulated human blood. Thromb. Haemost. 75:685–692, 1975.

    Google Scholar 

  6. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25:344–356, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Cadroy, Y., T. A. Horbett, and S. R. Hanson. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo. J. Lab. Clin. Med. 113:436–448, 1989.

    PubMed  CAS  Google Scholar 

  8. Clemetson, K., and J. Clemetson. Platelet collagen receptors. Thromb. Haemost. 86:189–197, 2001.

    PubMed  CAS  Google Scholar 

  9. Colman, R. W., V. L. Marder, A. W. Clowes, J. N. George, and S. Z. Goldhaber. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott Williams & Wilkins, 1827 pp., 2006.

  10. Cranmer, S. L., P. Ulsemer, B. M. Cooke, H. H. Salem, C. de la Salle, F. Lanza, and S. P. Jackson. Glycoprotein (Gp) Ib-Ix-transfected cells roll on a Von Willebrand factor matrix under flow. Importance of the Gpib/actin-binding protein (Abp-280) interaction in maintaining adhesion under high shear. J. Biol. Chem. 274:6097–6106, 1999.

    Article  PubMed  CAS  Google Scholar 

  11. Davies, M. J., and A. Thomas. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N. Engl. J. Med. 310:1137–1140, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Folie, B. J., and L. V. McIntire. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys. J. 56:1121–1141, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Fullard, J. F. The role of the platelet glycoprotein Iib/Iiia in thrombosis and haemostasis. Curr. Pharm. Des. 10:1567–1576, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Harrison, P., M. Robinson, R. Liesner, K. Khair, H. Cohen, I. Mackie, and S. Machin. The Pfa-100: a potential rapid screening tool for the assessment of platelet dysfunction. Clinical And Laboratory Haematology 24:225–232, 2002.

    Article  PubMed  Google Scholar 

  15. Hellums, J. 1993 Whitaker lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Hubbell, J. A., and L. V. McIntire. Platelet active concentration profiles near growing thrombi. A mathematical consideration. Biophys. J. 50:937–945, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Jurk, K., K. J. Clemetson, P. G. De Groot, M. F. Brodde, M. Steiner, N. Savion, D. Varon, J. J. Sixma, H. Van Aken, and B. E. Kehrel. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (Gpib): an alternative/backup mechanism to Von Willebrand factor. FASEB J. 17:1490–1492, 2003.

    PubMed  CAS  Google Scholar 

  18. Kamath, S., A. D. Blann, and G. Y. H. Lip. Platelet activation: assessment and quantification. Eur. Heart J. 22:1561–1571, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88:1525–1541, 1996.

    PubMed  CAS  Google Scholar 

  20. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399, 1997.

    Article  Google Scholar 

  21. Ku, D. N., and C. J. Flannery. Development of a Flow-through system to create occluding thrombus. Biorheology 44:273–284, 2007.

    PubMed  Google Scholar 

  22. Marco, L. D., A. Girolami, T. S. Zimmerman, and Z. M. Ruggeri. Von Willebrand factor interaction with the glycoprotein Iib/Iia complex its role in platelet function as demonstrated in patients with congenital afibrinogenemia. J. Clin. Investig. 77:1272–1277, 1986.

    Article  PubMed  Google Scholar 

  23. Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. Reininger, A. J., H. F. G. Heijnen, H. Schumann, H. M. Specht, W. Schramm, and Z. M. Ruggeri. Mechanism of platelet adhesion to Von Willebrand factor and microparticle formation under high shear stress. Blood 107:3537–3545, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Ruggeri, Z. M., J. N. Orje, R. Habermann, A. B. Federici, and A. J. Reininger. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108:1903–1910, 2006.

    Article  PubMed  CAS  Google Scholar 

  26. Sakariassen, K. S., P. A. Aarts, P. G. de Groot, W. P. Houdijk, and J. J. Sixma. A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. J. Lab. Clin. Med. 102:522–535, 1983.

    PubMed  CAS  Google Scholar 

  27. Schoephoerster, R., F. Oynes, G. Nunez, M. Kapadvanjwala, and M. Dewanjee. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces. Arterioscler. Thromb. 13:1803–1813, 1993.

    Google Scholar 

  28. Sheehan, D., and B. Hrapchak. Theory and Practice of Histotechnology. Ohio: Battelle Press, 1980.

    Google Scholar 

  29. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Wootton, D., C. Markou, S. Hanson, and D. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng. 29:321–329, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Zwaginga, J. J., G. Nash, M. R. King, J. W. M. Heemskerk, M. Frojmovic, M. F. Hoylaerts, K. S. Sakariassen, and Biorheology Subcommittee of the SSC ISTH. Flow-based assays for global assessment of hemostasis. Part 1: biorheologic considerations. J. Thromb. Haemost. 4:2486–2487, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Zwaginga, J. J., K. S. Sakariassen, G. Nash, M. R. King, J. W. Heemskerk, M. Frojmovic, M. F. Hoylaerts, and Biorheology Subcommittee of the SSC ISTH. Flow-based assays for global assessment of hemostasis. Part 2: current methods and considerations for the future. J. Thromb. Haemost. 4:2716–2717, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by David Roberts, MD (Emory University) and the LP Huang Chair Professorship funds. We thank Dr. Hans Deckmyn (Katholike Universiteit, Leuven, Kortrijk Campus) for many helpful discussions.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ku.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 26650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Para, A., Bark, D., Lin, A. et al. Rapid Platelet Accumulation Leading to Thrombotic Occlusion. Ann Biomed Eng 39, 1961–1971 (2011). https://doi.org/10.1007/s10439-011-0296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0296-3

Keywords

Navigation