Skip to main content

Advertisement

Log in

Biomodels of Bone: A Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a definition of a biomodel is presented, based on which different specific types of biomodels are identified, viz., virtual biomodels, computational biomodels, and physical biomodels. The paper then focuses on both physical and virtual biomodels of bone, and presents a review of model generation methodologies, giving examples of typical biomodel applications. The use of macroscale biomodels for such issues as the design and preclinical testing of surgical implants and preoperative planning is discussed. At the microscale, biomodels of trabecular bone are examined and the link with scaffolds for tissue engineering is established. Conclusions are drawn on the state of the art, and the major developments necessary for the continued expansion of the field are identified. Finally, arguments are given on the benefits of integrating the use of the different types of biomodels reviewed in this paper, for the benefit of future research in biomechanics and biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abukawa, H., H. Terai, D. Hannouche, J. P. Vacanti, L. B. Kaban, and M. J. Troulis. Formation of a mandibular condyle in vitro by tissue engineering. J. Oral Maxillofac. Surg. 61(1):94–100, 2003.

    Article  PubMed  Google Scholar 

  2. Alberti, C. Three-dimensional CT and structure models. Br. J. Radiol. 53(627):261–262, 1980.

    PubMed  Google Scholar 

  3. Aung, S. C., B. K. Tan, C. L. Foo, and S. T. Lee. Selective laser sintering: Application of a rapid prototyping method in craniomaxillofacial reconstructive surgery. Ann. Acad. Med. Singapore 28(5):739–743, 1999.

    PubMed  Google Scholar 

  4. Barker, T. M., W. J. S. Earwaker, N. Frost, and G. Wakeley. Integration of 3-D medical imaging and rapid prototyping to create stereolithographic models. Australas. Phys. Eng. Sci. Med. 16(2):79–85, 1993.

    PubMed  Google Scholar 

  5. Berry, E., J. M. Brown, M. Connell, C. M. Craven, N. D. Efford, A. Radjenovic, and M. A. Smith. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med. Eng. Phys. 19(1):90–96, 1997.

    Article  PubMed  Google Scholar 

  6. Bill, J. S., J. F. Reuther, W. Dittmann, N. Kubler, J. L. Meier, H. Pistner, and G. Wittenberg. Stereolithography in oral and maxillofacial operation planning. Int. J. Oral Maxillofac. Surg. 24(2):98–103, 1995.

    PubMed  Google Scholar 

  7. Binder, T. M., D. Moertl, G. Mundigler, G. Rehak, M. Franke, G. Delle-Karth, W. Mohl, H. Baumgartner, and G. Maurer. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: In vitro and in vivo validation. J. Am. Coll. Cardiol. 35(1):230–237, 2000.

    Article  PubMed  Google Scholar 

  8. Blackwell, M., C. Nikou, A. M. DiGioia, and T. Kanade. An Image Overlay system for medical data visualization. Med. Image Anal. 4:67–72, 2000.

    Article  PubMed  Google Scholar 

  9. Borah, B., G. Gross, T. Dufresne, T. Smith, M. Cockman, P. Chmielewski, M. Lundy, J. Hartke, and E. Sod. Three-dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat. Rec. (New Anat.) 265(2):101–110, 2001.

    Article  Google Scholar 

  10. Brief, J., S. Hassfeld, S. Däuber, A. Pernozzoli, J. Munchenberg, T. Redlich, M. Walz, R. Krempien, H. Weisser, C. Poeckler, J. Raczkowsky, O. Burgert, T. Salb, B. Kotrikova, U. Rembold, H. Wörn, R. Dillmann and J. Mühling. 3D norm data: The first step towards semiautomatic virtual craniofacial surgery. Comput. Aided Surg. 5(5):353–358, 2000.

    Article  PubMed  Google Scholar 

  11. Burg, K. J. L., S. Porter, and J. F. Kellam. Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359, 2000.

    Article  PubMed  Google Scholar 

  12. Camarillo, D. B., T. M. Krummel, J. Salisbury, and J. Kenneth. Robotic technology in surgery: Past, present, and future. Am. J. Surg. 188(41001):2–15, 2004.

    Article  Google Scholar 

  13. Cancedda, R., B. Dozin, P. Giannoni, and R. Quarto. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 22(1):81–91, 2003.

    Article  PubMed  Google Scholar 

  14. Chao, E. Y. S. Graphic-based musculoskeletal model for biomechanical analyses and animation. Med. Eng. Phys. 25(3):201–212, 2003.

    Article  PubMed  Google Scholar 

  15. Chen, M. K., and S. F. Badylak. Small bowel tissue engineering using small intestinal submucosa as a scaffold. J. Surg. Res. 99(2):352–358, 2001.

    Article  PubMed  Google Scholar 

  16. Das, S., and S. J. Hollister. “Tissue engineering scaffolds.” In: Encyclopedia of Materials: Science and Technology, edited by K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan. Oxford: Elsevier Science Ltd., 2001, pp. 1–7.

  17. Das, S., S. J. Hollister, C. Flanagan, A. Adewunmi, K. Bark, C. Chen, K. Ramaswamy, D. Rose, and E. Widjaja. Freeform fabrication of nylon-6 tissue engineering scaffolds. Rapid Prototyping J. 9(1):43–49, 2003.

    Article  Google Scholar 

  18. Davis, M. W., and J. P. Vacanti. Toward development of an implantable tissue engineered liver. Biomaterials 17(3):365–372, 1996.

    Article  PubMed  Google Scholar 

  19. D'Urso, P. S., R. L. Atkinson, M. W. Lanigan, W. J. Earwaker, I. J. Bruce, A. Holmes, T. M. Barker, D. J. Effeney, and R. G. Thompson. Stereolithographic (SL) biomodelling in craniofacial surgery. Br. J. Plast. Surg. 51(7):522–530, 1998.

    Article  PubMed  Google Scholar 

  20. D'Urso, P. S., W. J. Earwaker, T. M. Barker, M. J. Redmond, R. G. Thompson, D. J. Effeney, and F. H. Tomlinson. Custom cranioplasty using stereolithography and acrylic. Br. J. Plast. Surg. 53(3):200–204, 2000.

    Article  PubMed  Google Scholar 

  21. P. S., and M. J. Redmond. A method for the resection of cranial tumours and skull reconstruction. Br. J. Neurosurg. 14(6):555–559, 2000.

    Article  PubMed  Google Scholar 

  22. D'Urso, P. S., R. G. Thompson, R. L. Atkinson, M. J. Weidmann, M. J. Redmond, B. I. Hall, S. J. Jeavons, M. D. Benson, and W. J. S. Earwaker. Cerebrovascular biomodelling: A technical note. Surg. Neurol. 52(5):490–500, 1999.

    Article  PubMed  Google Scholar 

  23. Engelke, K., C. Süß, and W. A. Kalender. Stereolithographic models simulating trabecular bone and their characterization by thin-slice- and micro-CT. Eur. Radiol. 11(10):2026–2040, 2001.

    Article  PubMed  Google Scholar 

  24. Eufinger, H., and E. Machtens. Reconstruction in craniofacial contour and continuity defects with preoperativly designed individual implants. Mund. Kiefer. Gesichtschir. 1(Suppl. 1):S129–S132, 1997.

    PubMed  Google Scholar 

  25. Fallahi, B., M. Foroutan, S. Motavalli, M. Dujovny, and S. Limaye. Computer-aided manufacturing of implants for the repair of large cranial defects: An improvement of the stereolithography technique. Neurol. Res. 21(3):281–286, 1999.

    Article  PubMed  Google Scholar 

  26. Flynn, L., P. D. Dalton, and M. S. Shoichet. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 24(23):4265–4272, 2003.

    Article  PubMed  Google Scholar 

  27. Girod, S., M. Teschner, U. Schrell, B. Kevekordes, and B. Girod. Computer-aided 3-D simulation and prediction of craniofacial surgery: A new approach. J. Craniomaxillofac. Surg. 29(3):156–158, 2001.

    PubMed  Google Scholar 

  28. Hafemann, B., S. Ensslen, C. Erdmann, R. Niedballa, A. Zuhlke, K. Ghofrani, and C. J. Kirkpatrick. Use of a collagen/elastin-membrane for the tissue engineering of dermis. Burns 25(5):373–384, 1999.

    Article  PubMed  Google Scholar 

  29. Handels, H., J. Ehrhardt, W. Plotz, and S. J. Poppl. Virtual planning of hip operations and individual adaption of endoprostheses in orthopaedic surgery. Int. J. Med. Inform. 58–59:21–28, 2000.

    Article  PubMed  Google Scholar 

  30. Hassfeld, S., J. Muhling, and J. Zoller. Intraoperative navigation in oral and maxillofacial surgery. Int. J. Oral Maxillofac. Surg. 24(2):111–119, 1995.

    PubMed  Google Scholar 

  31. Heckmann, S., W. Winter, M. Meyer, H. Weber, and M. Wichmann. Overdenture attachment selection and the loading of implant and denture-bearing area. Part 1: In vivo verification of stereolithographic model. Clin. Oral Implants Res. 12(6):617–623, 2001.

    Article  PubMed  Google Scholar 

  32. Heckmann, S., W. Winter, M. Meyer, H. Weber, and M. Wichmann. Overdenture attachment selection and the loading of implant and denture-bearing area. Part 2: A methodical study using five types of attachment. Clin. Oral Implants Res. 12(6):640–647, 2001.

    Article  PubMed  Google Scholar 

  33. Heissler, E., F. S. Fischer, S. Bolouri, T. Lehmann, W. Mathar, A. Gebhardt, W. Lanksch, and J. Bier. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int. J. Oral Maxillofac. Surg. 27(5):334–338, 1998.

    PubMed  Google Scholar 

  34. Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103, 2002.

    Article  PubMed  Google Scholar 

  35. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543, 2000.

    Article  PubMed  Google Scholar 

  36. Jans, G., J. Vander Sloten, R. Gobin, G. Van der Perre, R. Van Audekercke, and M. Mommaerts. Computer-aided craniofacial surgical planning implemented in CAD software. Comput. Aided Surg. 4(3):117–128, 1999.

    Article  PubMed  Google Scholar 

  37. Jones, J. R., and L. L. Hench. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7(4–5):301–307, 2003.

    Article  Google Scholar 

  38. Kadner, A., S. P. Hoerstrup, J. Tracy, C. Breymann, C. F. Maurus, S. Melnitchouk, G. Kadner, G. Zund, and M. Turina. Human umbilical cord cells: A new cell source for cardiovascular tissue engineering. Ann. Thorac. Surg. 74(4):1422–1428, 2002.

    Article  Google Scholar 

  39. Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C 23(5):611–620, 2003.

    Article  Google Scholar 

  40. Kermer, C., M. Rasse, G. Lagogiannis, G. Undt, A. Wagner, and W. Millesi. Colour stereolithography for planning complex maxillofacial tumour surgery. J. Craniomaxillofac. Surg. 26(6):360–362, 1998.

    PubMed  Google Scholar 

  41. Kumar, P., J. K. Santosa, E. Beck, and S. Das. Direct-write deposition of fine powders through miniature hopper–nozzles for multi-material solid freeform fabrication. Rapid Prototyping J. 10(1):14–23, 2004.

    Article  Google Scholar 

  42. Lam, C. X. F., X. M. Mo, S. H. Teoh, and D. W. Hutmacher. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 20(1–2):49–56, 2002.

    Article  Google Scholar 

  43. Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447, 2002.

    Article  PubMed  Google Scholar 

  44. Leong, K. F., C. M. Cheah, and C. K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378, 2003.

    Article  PubMed  Google Scholar 

  45. Leyh, R. G., M. Wilhelmi, T. Walles, K. Kallenbach, P. Rebe, A. Oberbeck, T. Herden, A. Haverich, and H. Mertsching. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J. Thorac. Cardiovasc. Surg. 126(4):1000–1004, 2003.

    Article  PubMed  Google Scholar 

  46. Liebschner, M. A. K. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25(9):1697–1714, 2004.

    Article  PubMed  Google Scholar 

  47. Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37(5):623–636, 2004.

    Article  PubMed  Google Scholar 

  48. Lindner, A., M. Rasse, H. P. Wolf, W. Millesi, R. Eglmeier, and I. Friede. Indications and use of stereolithographic skull reconstructions in oromaxillofacial surgery. Radiologe 35(9):578–582, 1995.

    PubMed  Google Scholar 

  49. Meier, A. H., C. L. Rawn, and T. M. Krummel. Virtual reality: Surgical application—Challenge for the new millennium. J. Am. Coll. Surg. 192(3):372–384, 2001.

    Article  PubMed  Google Scholar 

  50. Morris, C. L., R. F. Barber, and R. Day. Orofacial prosthesis design and fabrication using stereolithography. Aust. Dent. J. 45(4):250–253, 2000.

    PubMed  Google Scholar 

  51. Müller, R., H. Van Campenhout, B. Van Damme, G. Van der Perre, J. Dequeker, T. Hildebrand, and P. Rüegsegger. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 23(1):59–66, 1998.

    Google Scholar 

  52. Niklason, L. E., and R. S. Langer. Advances in tissue engineering of blood vessels and other tissues. Transplant Immunol. 5(4):303–306, 1997.

    Article  Google Scholar 

  53. Over, C., W. Meiners, K. Wissenbach, M. Lindemann, and J. Hutfless. Selective laser melting: A new approach for the direct manufacturing of metal parts and tools. In: Proceedings of the LANE 2001. Germany: Erlangen, 2001.

  54. Palm, W. Rapid Prototyping Primer. Pennsylvania State University, University Park, Pennsylvania: The Learning Factory, 2002. Available on http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm

  55. Peckitt, N. S. Stereoscopic lithography: Customized titanium implants in orofacial reconstruction. A new surgical technique without flap cover. Br. J. Oral Maxillofac. Surg. 37(5):353–369, 1999.

    Article  PubMed  Google Scholar 

  56. Perry, T. E., S. Kaushal, F. W. H. Sutherland, K. J. Guleserian, J. Bischoff, M. Sacks, and J. E. Mayer. Bone marrow as a cell source for tissue engineering heart valves. Ann. Thorac. Surg. 75(3):761–767, 2003.

    Article  PubMed  Google Scholar 

  57. Petzold, R., H.-F. Zeilhofer, and W. A. Kalender. Rapid protyping technology in medicine—Basics and applications. Comput. Med. Imaging Graph. 23(5):277–284, 1999.

    Article  PubMed  Google Scholar 

  58. Ratcliffe, A. Tissue engineering of vascular grafts. Matrix Biol. 19(4):353–357, 2000.

    Article  PubMed  Google Scholar 

  59. Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8):1487–1497, 2003.

    Article  PubMed  Google Scholar 

  60. Santler, G., H. Kärcher, A. Gaggl, and R. Kern. Stereolithography versus milled three-dimensional models: Comparison of production method, indication, and accuracy. Comput. Aided Surg. 3(5):248–256, 1998.

    Article  PubMed  Google Scholar 

  61. Santler, G., H. Kärcher, and R. Kern. Stereolithographic models versus milled three-dimensional models. Production, indications and accuracy. Mund. Kiefer. Gesichtschir. 2(2):91–95, 1998.

    Article  PubMed  Google Scholar 

  62. Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. H. Daebritz, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer, Jr. Tissue engineering of heart valves: In vitro experiences. Ann. Thorac. Surg. 70(1):140–144, 2000.

    Article  PubMed  Google Scholar 

  63. Sohmura, T., H. Hojo, M. Nakajima, K. Wakabayashi, M. Nagao, S. Iida, T. Kitagawa, M. Kogo, T. Kojima, and K. Matsumura. Prototype of simulation of orthognathic surgery using a virtual reality haptic device. Int. J. Oral Maxillofac. Surg. 33(8):740–750, 2004.

    PubMed  Google Scholar 

  64. Sun, W., A. Darling, B. Starly, and J. Nam. Computer-aided tissue engineering: Overview, scope and challenges. Biotechnol. Appl. Biochem. 39(1):29–47, 2004.

    PubMed  Google Scholar 

  65. Sun, W., and P. Lal. Recent development on computer aided tissue engineering—A review. Comput. Methods Programs Biomed. 67(2):85–103, 2002.

    Article  PubMed  Google Scholar 

  66. Sun, W., B. Starly, A. Darling, and C. Gomez. Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds. Biotechnol. Appl. Biochem. 39(1):49–58, 2004.

    PubMed  Google Scholar 

  67. Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer–ceramic scaffolds. Biomaterials 24(1):181–194, 2003.

    Article  PubMed  Google Scholar 

  68. Tan, K. H., C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar, and S. W. Cha. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123, 2003.

    Article  PubMed  Google Scholar 

  69. Vail, N. K., L. D. Swain, W. C. Fox, T. B. Aufdlemorte, G. Lee, and J. W. Barlow. Materials for biomedical applications. Mater. Des. 20(2–3):123–132, 1999.

    Google Scholar 

  70. Vander Sloten, J. In: Computer Technology in Biomaterials Science and Engineering, edited by J. Vander Sloten. Chichester, West Sussex, UK: John Wiley & Sons Ltd., 2000.

  71. Wang, F., L. Shor, A. Darling, S. Khalil, W. Sun, S. Güçeri, and A. Lau. Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds. Rapid Prototyping J. 10(1):42–49, 2004.

    Google Scholar 

  72. Winder, J., R. S. Cooke, J. Gray, T. Fannin, and T. Fegan. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J. Med. Eng. Technol. 23(1):26–28, 1999.

    Article  PubMed  Google Scholar 

  73. Xiong, Z., Y. Yan, S. Wang, R. Zhang, and C. Zhang. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater. 46(11):771–776, 2002.

    Article  Google Scholar 

  74. Yang, S., K.-F. Leong, Z. Du, and C.-K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1):1–11, 2002.

    Article  PubMed  Google Scholar 

  75. Zein, I., D. W. Hutmacher, K. C. Tan, and S. H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185, 2002.

    Article  PubMed  Google Scholar 

  76. Zein, I., D. W. Hutmacher, S. H. Teoh, K. F. Tam, and K. C. Tan. The processing of bioresorbable scaffolds for tissue engineering applications via fused deposition modeling. In: Proceedings of the Fourth Asian Symposium on Biomedical Materials, Singapore, 1999.

  77. Zysset, P. K., A. L. Marsan, T.-M. G. Chu, R. E. Guldberg, J. W. Halloran, and S. J. Hollister. Rapid prototyping of trabecular bone for mechanical testing. In: Proceedings of the Bioengineering Conference. Sunriver, OR, USA: American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lohfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohfeld, S., Barron, V. & McHugh, P.E. Biomodels of Bone: A Review. Ann Biomed Eng 33, 1295–1311 (2005). https://doi.org/10.1007/s10439-005-5873-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-5873-x

Keywords

Navigation