Skip to main content

Advertisement

Log in

The influence of size, shape and vessel geometry on nanoparticle distribution

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are emerging as promising carrier platforms for targeted drug delivery and imaging probes. To evaluate the delivery efficiency, it is important to predict the distribution of NPs within blood vessels. NP size, shape and vessel geometry are believed to influence its biodistribution in circulation. Whereas, the effect of size on nanoparticle distribution has been extensively studied, little is known about the shape and vessel geometry effect. This paper describes a computational model for NP transport and distribution in a mimetic branched blood vessel using combined NP Brownian dynamics and continuum fluid mechanics approaches. The simulation results indicate that NPs with smaller size and rod shape have higher binding capabilities as a result of smaller drag force and larger contact area. The binding dynamics of rod-shaped NPs is found to be dependent on their initial contact points and orientations to the wall. Higher concentration of NPs is observed in the bifurcation area compared to the straight section of the branched vessel. Moreover, it is found that Péclet number plays an important role in determining the fraction of NPs deposited in the branched region and the straight section. Simulation results also indicate that NP binding decreases with increased shear rate. Dynamic NP re-distribution from low to high shear rates is observed due to the non-uniform shear stress distribution over the branched channel. This study would provide valuable information for NP distribution in a complex vascular network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida JPM, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6(5):815–835

    Article  Google Scholar 

  • Barber J, Alberding J, Restrepo J, Secomb T (2008) Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann Biomed Eng 36(10):1690–1698

    Article  Google Scholar 

  • Bell G (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Article  Google Scholar 

  • Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45(6):1051–1064

    Article  Google Scholar 

  • Chang K-C, Tees DFJ, Hammer DA (2000) The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc Nat Acad Sci 97(21):11262–11267

    Article  Google Scholar 

  • Chauvierre C, Labarre D, Couvreur P, Vauthier C (2003) Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm Res 20(11):1786–1793

    Article  Google Scholar 

  • Chen H, Ruckenstein E (2009) Nanoparticle aggregation in the presence of a block copolymer. J Chem Phys 131(24):244904–244907

    Article  Google Scholar 

  • Chen H, Ruckenstein E (2011) Aggregation of nanoparticles in a block copolymer bilayer. J Colloid Interface Sci 363(2):573–578

    Article  Google Scholar 

  • Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  Google Scholar 

  • Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE (2009) Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 6(5):1343–1352

    Article  Google Scholar 

  • Cozens-Roberts C, Lauffenburger DA, Quinn JA (1990a) Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophys J 58(4):841–856

    Article  Google Scholar 

  • Cozens-Roberts C, Quinn JA, Lauffenberger DA (1990b) Receptor-mediated adhesion phenomena. Model studies with the radical-flow detachment assay. Biophys J 58(1):107–125

    Article  Google Scholar 

  • Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–5314

    Article  Google Scholar 

  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327

    Article  Google Scholar 

  • Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S (2010) Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 146(2):196–200

    Article  Google Scholar 

  • Einstein A (1956) In: Fürth R (ed) Investigations on the theory of Brownian Movement, translated by A. D. Cowper (1926, reprinted 1956), Dover Publ., New York

  • Ermak DL, Mccammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360

    Article  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58(14):1456–1459

    Article  Google Scholar 

  • Freitas RA Jr (ed) (1999) Nanomedicine. Volume I: basic capabilities. Landes Bioscience, Georgetown

    Google Scholar 

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255

    Article  Google Scholar 

  • Gentile F, Ferrari M, Decuzzi P (2008) The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng 36(2):254–261

    Article  Google Scholar 

  • Haun JB, Hammer DA (2008) Quantifying nanoparticle adhesion mediated by specific molecular interactions. Langmuir 24(16):8821–8832

    Article  Google Scholar 

  • Hoganson DM, Howard PI II, Spool ID, Burns OH, Gilmore JR, Vacanti JP (2010) Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold. Tissue Eng Part A 16(5):1469–1477

    Article  Google Scholar 

  • Kona S, Dong J-F, Liu Y, Tan J, Nguyen KT (2012) Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int J Pharm 423(2):516–524

    Article  Google Scholar 

  • Lee TR, Chang YS, Choi JB, Liu WK, Kim YJ (2009) Numerical simulation of a nanoparticle focusing lens in a microfluidic channel by using immersed finite element method. J Nanosci Nanotechnol 9(12):7407–7411

    Google Scholar 

  • Li A, Ahmadi G (1992) Dispersion and deposition of spherical-particles from point sources in a turbulent channel flow. Aerosol Sci Tech 16(4):209–226

    Article  Google Scholar 

  • Li M, Panagi Z, Avgoustakis K, Reineke J (2012) Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomed 7:1345–1356

    Google Scholar 

  • Liu Y, Liu WK, Belytschko T, Patankar N, To AC, Kopacz A, Chung JH (2007) Immersed electrokinetic finite element method. Int J Numer Meth Eng 71(4):379–405

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Weller GER, Zern B, Ayyaswamy PS, Eckmann DM, Muzykantov VR, Radhakrishnan R (2010) Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments. Proc Nat Acad Sci 107(38):16530–16535

    Article  Google Scholar 

  • Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3(2):181–194

    Article  Google Scholar 

  • Longest PW, Kleinstreuer C (2003) Comparison of blood particle deposition models for non-parallel flow domains. J Biomech 36(3):421–430

    Article  Google Scholar 

  • Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C (1997) Biologically erodable microsphere as potential oral drug delivery system. Nature 386(6623):410–414

    Article  Google Scholar 

  • Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8(1):15–23

    Article  Google Scholar 

  • Mody NA, King MR (2007) Influence of Brownian motion on blood platelet flow behavior and adhesive dynamics near a planar wall. Langmuir 23(11):6321–6328

    Article  Google Scholar 

  • Mori N, Kumagae M, Nakamura K (1998) Brownian dynamics simulation for suspensions of oblong-particles under shear flow. Rheol Acta 37(2):151–157

    Article  Google Scholar 

  • Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16(8):1450–1458

    Article  Google Scholar 

  • Muzykantov VR, Radhakrishnan R, Eckmann DM (2012) Dynamic factors controlling targeting nanocarriers to vascular endothelium. Curr Drug Metab 13(1):70–81

    Article  Google Scholar 

  • Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao JM (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430

    Article  Google Scholar 

  • Peppas NA (2006) Intelligent biomaterials as pharmaceutical carriers in microfabricated and nanoscale devices. MRS Bull 31(11):888–893

    Article  Google Scholar 

  • Prabhakarpandian B, Pant K, Scott R, Patillo C, Irimia D, Kiani M, Sundaram S (2008) Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomed Microdevices 10(4):585–595

    Article  Google Scholar 

  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu AM, Mallikarjuana NN, Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M, Aminabhavi TM (2005) Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J Control Release 108(2–3):193–214

    Article  Google Scholar 

  • Saad Y, Schultz MH (1986) Gmres—a generalized minimal residual algorithm for solving nonsymmetric linear-systems. Siam J Sci Stat Comp 7(3):856–869

    Article  MathSciNet  MATH  Google Scholar 

  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M (2008) Seven challenges for nanomedicine. Nat Nano 3(5):242–244

    Article  Google Scholar 

  • Shah P (2006) Use of nanotechnologies for drug delivery. MRS Bull 31(11):894–899

    Article  Google Scholar 

  • Shah S, Liu Y (2011) Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 11(2):919–928

    Article  Google Scholar 

  • Sharma N, Patankar NA (2004) Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations. J Comput Phys 201(2):466–486

    Article  MATH  Google Scholar 

  • Shuvaev VV, Ilies MA, Simone E, Zaitsev S, Kim Y, Cai S, Mahmud A, Dziubla T, Muro S, Discher DE, Muzykantov VR (2011) Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano 5(9):6991–6999

    Article  Google Scholar 

  • Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16(2–3):195–214

    Article  Google Scholar 

  • Sukhorukov GB, Mohwald H (2007) Multifunctional cargo systems for biotechnology. Trend Biotechnol 25(3):93–98

    Article  Google Scholar 

  • Tan J, Thomas A, Liu Y (2012) Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8(6):1934–1946

    Article  Google Scholar 

  • Tousi N, Wang B, Pant K, Kiani MF, Prabhakarpandian B (2010) Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvasc Res 80(3):384–388

    Article  Google Scholar 

  • Ward MD, Hammer DA (1993) A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys J 64(3):936–959

    Article  Google Scholar 

  • Wischgoll T, Choy JS, Kassab GS (2009) Extraction of morphometry and branching angles of porcine coronary arterial tree from CT images. Am J Physiol Heart Circu Physiol 297(5):H1949–H1955

    Article  Google Scholar 

  • Xiong W, Zhang J (2012) Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects. Biomech Model Mechanobiol 11(3):575–583

    Article  Google Scholar 

  • Yang K, Ma Y-Q (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nano 5(8):579–583

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports of this work from NSF CAREER Grant CBET-1113040 and NIH grant EB009786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Shah, S., Thomas, A. et al. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluid 14, 77–87 (2013). https://doi.org/10.1007/s10404-012-1024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1024-5

Keywords

Navigation