Skip to main content

Advertisement

Log in

Micromorphological, geochemical, and diagenetic characterization of sirenian ribs preserved in the Late Miocene paleontological site of Cessaniti (southern Calabria, Italy)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The site of Cessaniti (Vibo Valentia, Italy) has been well known since the 19th century for the richness and good preservation of its Miocene fauna and flora. The sedimentary succession of the site represents a paralic system that evolved toward an open-marine environment recording the Tortonian transgression. The fossil assemblage contains rich invertebrate (corals, bivalves, gastropods, brachiopods, echinoids, benthic and planktonic foraminifers) and vertebrate faunas (proboscideans, rhinoceroses, giraffids, bovids, sirenids, marine turtles, and fish remains). The fossils recovered at the Cessaniti site have a relevant role in phylogenetic studies and paleogeographic reconstructions of Late Miocene environments of the southern Italy. This research is focused on the microstructure and preservation state of the fossil bones. Samples of Metaxytherium sp. bones have been analyzed to understand the diagenetic profile of the bone assemblages that characterizes the taphonomic history of the Cessaniti site. The analyses provided a comprehensive account of how bone mineral (bioapatite) has been altered and demonstrated that the post-burial processes did not significantly affect the micromorphological and biogeochemical features of the bones. The excellent preservation state of the bones strengthens the importance of the Cessaniti site for studies of the Mediterranean Miocene vertebrate fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Astibia H, Payros A, Suberbiola X, Berreteaga A, Elorza J, Etxebarria N, Tosquella J (2005) Sedimentology and taphonomy of sirenian remains from the Middle Eocene of the Pamplona Basin (Navarre, western Pyrenees). Facies 50:463–475

    Article  Google Scholar 

  • Ayliffe LK, Chivas AR, Leakey MG (1994) The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim Cosmochim Acta 58:5291–5298

    Article  Google Scholar 

  • Barbera C, Tavernier A (1987) Osservazioni paleoambientali su un banco di ostriche del Tortoniano di Capo Vaticano (Calabria, Italia). Atti Congr. Sorrento 29-31 maggio 1987, Lavori S.I.M. Napoli 23:409–41

  • Barbera C, Tavernier A (1990) Paleoecologia della successione miocenica di Vibo Valentia. In: Robba E (ed) Atti Quarto Simp Ecol Paleoecol Com Bent, Sorrento, pp 233–245

  • Barone G (1990) Tetraodontiformi del Tortoniano di Cessaniti. Notiz Miner e Paleont 65:57–62

    Google Scholar 

  • Behrensmeyer AK, Hill AP (1980) Fossils in the making, vertebrate taphonomy and paleoecology. University of Chicago Press, Chicago, p 338

    Google Scholar 

  • Bell LS, Skinner MF, Jones SJ (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. For Sci Int 82:129–140

    Google Scholar 

  • Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31:867–882

    Article  Google Scholar 

  • Blake RE, O’Neil JR, Garcia GA (1997) Oxygen isotope systematics of biologically mediated reactions of phosphates: I. Microbial degradation of organophosphorus compounds. Geochim Cosmochim Acta 61:4411–4422

    Article  Google Scholar 

  • Bocherens H, Drucker DG, Billiou D, Geneste JM, Kervazo B (2008) Grotte Chauvet (Ardèche, France): a “natural experiment” for bone diagenesis in karstic context. Palaeogeogr Palaeoclimatol Palaeoecol 266:220–226

    Article  Google Scholar 

  • Bonnischsen R, Sorg MH (1989) Bone modification. University of Maine, Orono, pp 61–72

    Google Scholar 

  • Cadee GC (1991) The history of taphonomy. In: Donovan SK (ed) The processes of fossilization. Columbia University Press, New York, pp 3–21

    Google Scholar 

  • Carone G, Domning D (2007) Metaxytherium serresii (Mammalia: Sirenia): new pre-Pliocene record, and implications for Mediterranean paleoecology before and after the Messinian Salinity Crisis. Boll Soc Paleontol Ital 46:55–92

    Google Scholar 

  • Checchia Rispoli G (1925) Illustrazione dei Clipeastri Miocenici della Calabria. Mem serv descriz Carta Geol Ital 9:13–75

    Google Scholar 

  • Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Wess TJ, Csapό J, Millard AR, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeometry 44:383–394

    Article  Google Scholar 

  • Conard NJ, Walker SJ, Kandel AW (2008) How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. Palaeogeogr Palaeoclimatol Palaeoecol 266:236–245

    Article  Google Scholar 

  • Dravis JJ, Yurewicz DA (1985) Enhanced carbonate petrography using fluorescence microscopy. J Sediment Petrol 55:795–804

    Google Scholar 

  • Elliot JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam, p 387

    Google Scholar 

  • Ferretti MP, Torre D, Rook L (2001) The remains from Cessaniti (Calabria, southern Italy) and their bearing on Late Miocene biogeography of the genus. The World of Elephants. International Congress, Rome, pp 633–636

    Google Scholar 

  • Ferretti MP, Rook L, Torre D (2003) Stegotetrabelodon (Proboscidea, Elephantidae) from the Late Miocene of Southern Italy. J Vertebr Paleontol 23:659–666

    Article  Google Scholar 

  • Francillon-Vieillot H, Buffrénil V, de Castanet J, Géraudie J, Meunier FJ, Sire JY, Zylberger L, de Ricqlès A (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal biomineralization: patterns. processes and evolutionary trends. Van Nostrand Reinhold, New York, pp 471–671

    Google Scholar 

  • Gaetani M, Saccà D (1983) Brachiopodi neogenici e pleistocenici della provincia di Messina e della Calabria meridionale. Geol Romana 22:1–43

    Google Scholar 

  • Grasso M, Pedley M, Di Stefano R, Cormaci R (1996) Upper Miocene reefs in southern Calabria: new records from the Palmi and Vibo Valentia areas and their paleogeographic and neotectonic importance. Boll Soc Paleont Ital 115:29–38

    Google Scholar 

  • Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328

    Article  Google Scholar 

  • Hedges REM, Millard AP (1995) Bones and groundwater: towards the modelling of diagenetic processes. J Archaeol Sci 22:155–164

    Article  Google Scholar 

  • Hedges REM, Millard AR, Pike AWG (1995) Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci 22:201–209

    Article  Google Scholar 

  • Hoppe KA, Koch PL, Furutani TT (2003) Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. Int J Osteoarchaeol 13:20–28

    Article  Google Scholar 

  • Imbesi Smedile M (1958) Clipeastri aquitaniani, elveziani e tortoniani della Calabria. Paleontogr Ital 43:1–47

    Google Scholar 

  • Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95

    Article  Google Scholar 

  • Lee-Thorp JA, Sealy J (2008) Beyond documenting diagenesis: the fifth international bone diagenesis workshop. Palaeogeogr Palaeoclimatol Palaeoecol 266:129–133

    Article  Google Scholar 

  • Lee-Thorp JA, Sponheimer M (2003) Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for palaeodietary studies. J Anthropol Archaeol 22:208–216

    Article  Google Scholar 

  • LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, Paris, p 201

    Google Scholar 

  • Lyman RL (1994) Vertebrate taphonomy. Cambridge manuals in archaeology., Cambridge University Press, Cambridge, p 552

    Google Scholar 

  • Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Barker CE, Koop OC (eds) Luminescence microscopy and spectroscopy: qualitative and quantitative applications. SEMP Short Course 25:9–25

    Google Scholar 

  • Marra AC, Rook L, Carone G, Gramigna P (2009) Taxonomic assessment and palaeogegraphic significance of the giraffid remains from Cessaniti (Late Miocene, Italy). 13 th Congress RCMNS Abstract book. Acta Nat Aten Parm 45:299–301

    Google Scholar 

  • Michel V, Ildefonse P, Morin G (1995) Chemical and structural changes in Cervus elaphus tooth enamels during fossilization (Lazaret cave): a combined IR and XRD Rietveld analysis. Appl Geochem 10:145–159

    Article  Google Scholar 

  • Millard AR (1993) Diagenesis of archaeological bone: the case of uranium uptake. Unpublished Ph.D dissertation, University of Oxford, Oxford

  • Neuweiler F, Reitner J (1995) Epifluorescence-microscopy of selected automicrites from lower Carnian Cipitboulders of the Cassian formation (Seeland Alpe, Dolomites). In: Reitner J, Neuweiler F (eds) Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups. Facies 32:26–28

    Google Scholar 

  • Newesely H (1989) Fossil bone apatite. Appl Geochem 4:233–245

    Google Scholar 

  • Nicotera P (1959) Rilevamento geologico del versante settentrionale del M. Poro (Calabria). Mem Note Ist Geol Appl Napoli, Napoli 7:1–92

    Google Scholar 

  • Nielsen-Marsh CM (1997) Studies in archaeological bone diagenesis. Unpublished Ph.D thesis, University of Oxford, Oxford

  • Nielsen-Marsh CM, Hedges REM (1999) Bone porosity and the use of mercury intrusion porosimetry in bone diagenesis studies. Archaeometry 41:165–174

    Article  Google Scholar 

  • Nielsen-Marsh CM, Gernaey AM, Turner-Walker G, Hedges REM, Pike AWG, Collins MJ (2000) The chemical degradation of bone. In: Cox M, Mays S (eds) Human osteology in archaeology and forensic science. Greenwich Medical Media, London, pp 439–454

    Google Scholar 

  • Papazzoni CA, Sirotti A (1999) Heterostegina papyracea Sequenza, 1880, from the upper Miocene of Cessaniti (Vibo Valentia, Calabria, Southern Italy). Boll Soc Paleont Ital 38:15–21

    Google Scholar 

  • Pate DF, Hutton JT, Norrish K (1989) Ionic exchange between soil solution and bone: toward a predictive model. Appl Geochem 4:303–316

    Article  Google Scholar 

  • Piepenbrink H (1989) Examples of chemical changes during fossilisation. Appl Geochem 4:273–280

    Article  Google Scholar 

  • Pike AWG (1993) Bone porosity, water and diagenesis: towards a grand unified theory of bone diagenesis. Unpublished thesis, University of Bradford, England

  • Rey C, Collins B, Goehl T, Dickson R, Glimcher M (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform spectroscopy study. Calcified Tissue Int 45:157–164

    Article  Google Scholar 

  • Ricqlès A, Buffrénil V (2001) Bone histology, heterochronies and the return of tetrapods to life in water: where are we? In: Mazin JM, Buffrénil V (eds) Secondary adaptations of tetrapods to life in water. Verlag Dr. Friedrich Pfeil, Munich, pp 289–310

    Google Scholar 

  • Rook L, Gallai G, Torre D (2006) Land and endemic mammals in the Late Miocene of Italy: constraints for paleoegeographic outlines of Thyrrenian area. Paleogeogr Paleoclimatol Paleoecol 238:263–269

    Article  Google Scholar 

  • Russo F, Neri C, Mastandrea A, Baracca A (1997) The mud-mound nature of the Cassian platform margins of the Dolomites. A case history: the Cipit Boulders from Punta Grohmann (Sasso Piatto Massif, Northern Italy). Facies 36:25–36

    Article  Google Scholar 

  • Salaman M, Tuross N, Arensburg B, Weiner S (2005) Relatively well-reserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci USA 102:13783–13788

    Article  Google Scholar 

  • Ségalen L, de Rafélis M, Lee-Thorp JA, Maurer AF, Renard M (2008) Cathodoluminescence tools provide clues to depositional history in Miocene and Pliocene mammalian teeth. Palaeogeogr Palaeoclimatol Palaeoecol 266:246–253

    Article  Google Scholar 

  • Sharp Z, Atudorei V, Furrer H (2000) The effects of diagenesis on oxygen isotope ratios of biogenic phosphates. Am J Sci 300:222–237

    Article  Google Scholar 

  • Shemesh A (1990) Crystallinity and diagenesis of sedimentary apatites. Geochim Cosmochim Acta 54:2433–2438

    Article  Google Scholar 

  • Smith CI, Craig OE, Prigodich RV, Nielsen-Marsh CM, Jans MME, Vermeer C, Collins MJ (2005) Diagenesis and survival of osteocalcin in archaeological bone. J Archaeol Sci 32:105–113

    Article  Google Scholar 

  • Smith CI, Faraldos M, Fernández-Jalvo Y (2008) The precision of porosity measurements: effects of sample pre-treatment on porosity measurements of modern and archaeological bone. Palaeogeogr Palaeoclimatol Palaeoecol 266:175–182

    Article  Google Scholar 

  • Stamp LD (1921) On cycles of sedimentation in the Eocene strata of the Anglo-Franco-Belgian basin. Geol Mag 58:108–114

    Article  Google Scholar 

  • Stathopoulou ET, Psycharis V, Chryssikos GD, Gionis V, Theodorou G (2008) Bone diagenesis: new data from infrared spectroscopy and X-ray diffraction. Palaeogeogr Palaeoclimatol Palaeoecol 266:168–174

    Article  Google Scholar 

  • Stiner MC, Kuhn SL, Surovell TA, Goldberg P, Meignen L, Weiner S, Bar-Yosef O (2001) Bone preservation in Hayonim Cave (Israel): a macroscopic and mineralogical study. J Archaeol Sci 28:643–659

    Article  Google Scholar 

  • Trueman CN, Benton MJ, Palmer MR (2003) Geochemical taphonomy of shallow marine vertebrate assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 197:151–169

    Article  Google Scholar 

  • Turner-Walker G, Jans M (2008) Reconstructing taphonomic histories using histological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 266:227–235

    Article  Google Scholar 

  • Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the near east: a survey. J Archaeol Sci 17:187–196

    Article  Google Scholar 

  • Williams CT, Henderson P (1997) The environment of deposition indicated by the distribution of rare earth elements in fossil bone from Olduvai Gorge, Tanzania. Appl Geochem 12:537–547

    Article  Google Scholar 

  • Wright LE, Schwarcz P (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–944

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank F. Barattolo and an anonymous reviewer for their constructive comments, which greatly improved the manuscript. We are also indebted to J. Reitner for helpful suggestions during the writing of this paper. This research was supported by grant PRIN 2008 Calabria University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Guido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guido, A., Marra, A.C., Mastandrea, A. et al. Micromorphological, geochemical, and diagenetic characterization of sirenian ribs preserved in the Late Miocene paleontological site of Cessaniti (southern Calabria, Italy). Facies 58, 179–190 (2012). https://doi.org/10.1007/s10347-011-0284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-011-0284-y

Keywords

Navigation