Skip to main content
Log in

Taphonomy of Early Permian benthic assemblages (Carnic Alps, Austria): carbonate dissolution versus biogenic carbonate precipitation

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

During the Early Permian, in the area of the Carnic Alps, a quartz-gravelly beach fringed a mixed siliciclastic-carbonate lagoon with fleshy algal meadows and oncoids; seaward, an ooid shoal belt graded down dip to a low-energy carbonate inner shelf with phylloid algal meadows. In limestones, foraminiferal biomurae and bioclast preservation record tapholoss by rotting of non-calcified organisms (interpreted as fleshy algae) and by dissolution of aragonitic fossils. Carbonate loss by dissolution was counteracted and, locally, perhaps exceeded by carbonate precipitation of encrusting foraminifera and as oncoids. Sites of abrasion and carbonate dissolution (beach), sites with tapholoss by rotting and dissolution, but with microbialite/foraminiferal carbonate precipitation (lagoon, inner shelf), and sites only of carbonate precipitation (ooid shoals) co-existed on discrete shelf compartments. Compartmentalized, contemporaneous carbonate dissolution and precipitation, to total amounts yet difficult to quantify, impede straightforward estimates of ancient carbonate sediment budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Algeo TS, Wilkinson BH (1988) Periodicity of mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation. J Geol 96:313–322

    Google Scholar 

  • Baars DL, Torres AM (1991) Late Paleozoic phylloid algae - a pragmatic review. Palaios 6:513–515

    Google Scholar 

  • Broecker WS, Clark E (2003) Pseudo dissolution of marine calcite. Earth Planet Sci Lett 208:291–296

    Article  CAS  Google Scholar 

  • Buggisch W, Flügel E, Leitz F, Tietz G-F (1976) Die fazielle und paläogeographische Entwicklung im Perm der Karnischen Alpen und in den Randgebieten. Geol Rundsch 65:649–690

    Google Scholar 

  • Burchette TP, Riding R (1977) Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes. Lethaia 10:17–28

    Google Scholar 

  • Bush AM, Bambach RK (2004) Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J Geol 112:625–642

    Article  Google Scholar 

  • Cherns L, Wright VP (2000) Missing molluscs as evidence of large-scale early skeletal aragonite dissolution in a Silurian sea. Geology 28:791–794

    Article  Google Scholar 

  • Coniglio M, James NP (1985) Calcified algae as sediment contributors to Early Paleozoic limestones: evidence from deep-water sediments of the Cow Head Group, western Newfoundland. J Sediment Petrol 55:746–754

    Google Scholar 

  • Flügel E (1971) Palökologische Interpretation des Zottachkopf-Profiles mit Hilfe von Kleinforaminiferen (Oberer Pseudoschwagerinen-Kalk, unteres Perm: Karnische Alpen). Carinthia II, Sonderh 28:61–96

    Google Scholar 

  • Flügel E (1974) Fazies-Interpretation der unterpermischen Sedimente in den Karnischen Alpen. Carinthia II, 164(84):43–62

    Google Scholar 

  • Flügel E (1977) Environmental models for Upper Paleozoic benthic calcareous algal communities. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp 314–343

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Berlin

    Google Scholar 

  • Flügel E, Flügel-Kahler E (1980) Algen aus den Kalken der Trogkofel-Schichten der Karnischen Alpen. In: Flügel E (ed) Die Trogkofel-Stufe im Unterperm der Karnischen Alpen. Carinthia, Sonderh 36:113–182

  • Flügel E, Homann W, Tietz G-F (1971) Litho- und Biofazies eines Detailprofils in den Pberen Pseudoschwagerinen-Schichten (Unter-Perm) der Karnischen Alpen. Verh Geol Bundesanst 1971:10–42

    Google Scholar 

  • Flügel E, Fohrer B, Forke H, Krainer K, Samankassou E (1997) Cyclic sediments and algal mounds in the Upper Paleozoic of the Carnic Alps. Gaea Heidelberg 4:79–100

    Google Scholar 

  • Forke HC (1995) Biostratigraphie (Fusulinaceanen; Conodonten) und Mikrofazies im Unterperm (Sakmar) der Karnischen Alpen (Naßfeldgebiet, Österreich). Jb Geol Bundesanst 138:207–297

    Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, Cambridge

    Google Scholar 

  • Hampson GJ (2000) Discontinuity surfaces, clinoforms, and facies architecture in a wave-dominated, shoreface-shelf parasequence. J Sediment Res 70:325–340

    Google Scholar 

  • Homann W (1972) Unter- und tief-mittelpermische Kalkalgen aus den Rattendorfer Schichten, dem Trogkofel-Kalk und dem Treßdorfer Kalk der Karnischen Alpen (Österreich). Senckenberg Lethaea 53:135–313

    Google Scholar 

  • Kochansky-Devidé V (1973) Ramovsia limes n. gen. n. sp. (Problematica), ein Leitfossil der Grenzlandbänke (unteres Perm). N Jb Geol Paläont Mh 1973/8:462–468

    Google Scholar 

  • Krainer K (1992) Fazies, Sedimentationsprozesse und Paläogeographie im Karbon der Ost- und Südalpen. Jb Geol Bundesanst 135:99–193

    Google Scholar 

  • Krainer K, Davydov V (1998) Facies and biostratigraphy of the Late Carboniferous/Early Permian sedimentary sequence in the Carnic Alps (Austria/Italy). Geodiversitas 20:643–662

    Google Scholar 

  • Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A. Geochim Cosmochim Acta 63:2529–2546

    Article  CAS  Google Scholar 

  • Manzoni M, Venturini C, Vigliotti L (1989) Paleomagnetism of Upper Carboniferous limestones from the Carnic Alps. Tectonophysics 165:73–80

    Article  Google Scholar 

  • Morse JW, Gledhill DK, Millero FJ (2003) CaCO3 precipitation kinetics in waters from the Great Bahama Bank: Implications for the relationship between Bank hydrochemistry and whitings. Geochim Cosmocim Acta 67:2819–2826

    Article  CAS  Google Scholar 

  • Moulin E, Jordens A, Wollast R (1985) Influence of the aerobic bacterial respiration on the early dissolution of carbonates in coastal sediments. Proc Progr Belgian Oceanogr Res, March 1985, pp 196–208

  • Murray JW, Alve E (1999) Natural dissolution of modern shallow water benthic foraminifera: taphonomic effects on the palaeoecological record. Palaeogeogr Palaeoclimatol Palaeoecol 146:195–209

    Article  Google Scholar 

  • Nelsen JE Jr, Ginsburg RN (1986) Calcium carbonate production by epibionts on Thalassia in Florida Bay. J Sediment Petrol 56:622–628

    CAS  Google Scholar 

  • Palmer TJ, Hudson JD, Wilson MA (1988) Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature 335:809–810

    Article  CAS  Google Scholar 

  • Pattison SAJ (1995) Sequence stratigraphic significance of sharp-based lowstand shoreface deposits, Kenilworth Member, Book Cliffs, Utah. Amer Assoc Petrol Geol Bull 79:444–462

    Google Scholar 

  • Plint AG (1988) Sharp-based shoreface sequences and “offshore bars” in the Cardium Formation of Alberta: their relationship to relative changes in sea level. In: Wilgus CK, Hastings BS, Ross CA, Posamentier H, Kendall CGStC (eds) Sea-level changes - an integrated approach. SEPM Spec Publ 42:357–370

    Google Scholar 

  • Powell EN, Parsons-Hubbard KM, Callender WR, Staff GM, Rowe GT, Brett CE, Walker SE, Raymond A, Carlson DD, White S, Heise EA (2002) Taphonomy on the continental shelf and slope: two-year trends - Gulf of Mexico and Bahamas. Palaeogeogr Palaeoclimatol Palaeoecol 184:1–35

    Article  Google Scholar 

  • Pratt BR (2001) Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology 29:763–766

    Article  CAS  Google Scholar 

  • Riding R (1991) Calcified cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 55–87

    Google Scholar 

  • Robbins LL, Tao Y, Evans CA (1997) Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology 25:947–950

    Article  CAS  Google Scholar 

  • Rodriguez S (2004) Taphonomic alterations in upper Viséan dissepimented rugose corals from the Sierra del Castillo unit (Carboniferous, Córdoba, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 241:135–153

    Article  Google Scholar 

  • Ross CA, Ross JRP (1985) Late Paleozoic sequences are synchronous and worldwide. Geology 13:194–197

    Article  Google Scholar 

  • Samankassou E (2002) Cool-water carbonates in a paleoequatorial shallow-water environment: The paradox of the Auernig cyclic sediments (Upper Pennsylvanian, Carnic Alps, Austria-Italy) and its implications. Geology 30:655–658

    Article  Google Scholar 

  • Sanders D (1999) Shell disintegration and taphonomic loss in rudist biostromes. Lethaia 32:101–112

    Google Scholar 

  • Sanders D (2000) Rocky shore-gravelly beach transition, and storm/post-storm changes of a Holocene gravelly beach (Kos island, Aegean Sea): Stratigraphic significance. Facies 42:227–244

    Google Scholar 

  • Sanders D (2001) Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy): implications for taphonomy in tropical, shallow subtidal carbonate environments. Palaeogeogr Palaeoclimatol Palaeoecol 168:41–76

    Article  Google Scholar 

  • Sanders D (2003) Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance. J African Earth Sci 36:99–134

    Article  CAS  Google Scholar 

  • Sanders D (2004) Potential significance of syndepositional carbonate dissolution for platform banktop aggradation and sediment texture: a graphic modeling approach. Austrian J Earth Sci 95/96:71–79

    Google Scholar 

  • Scotese CR, Boucot AJ, McKerrow WS (1999) Gondwanan palaeogeography and palaeoclimatology. J African Earth Sci 28:99–114

    Article  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Article  Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103

    Article  Google Scholar 

  • Vachard D, Krainer K (2001) Smaller foraminifers, characteristic algae and pseudo-algae of the latest Carboniferous - Early Permian Rattendorf Group, Carnic Alps (Austria/Italy). Riv Ital Paleont Stratigr 107:169–195

    Google Scholar 

  • Venturini C (1982) Il bacino tardoercinico di Pramollo (Alpi Carniche): Un evoluzione regolata della tettonica sinsedimentaria. Mem Soc Geol Ital 24:23–42

    Google Scholar 

  • Venturini C (1991) Introduction to the geology of the Pramollo basin (Carnic Alps) and its surroundings. Giorn Geol 3A, 53:13–47

    Google Scholar 

  • Voigt E (1966) Die Erhaltung vergänglicher Organismen durch Abformung infolge Inkrustation durch sessile Tiere. N Jb Geol Paläont Abh 125:401–422

    Google Scholar 

  • Walter LM, Burton EA (1990) Dissolution of Recent platform carbonate sediments in marine pore fluids. Amer J Sci 290:601–643

    Google Scholar 

  • Walter LM, Bischof SA, Patterson WP, Lyons TL (1993) Dissolution and crystallization in modern shelf carbonates: Evidence from pore water and solid phase chemistry. Phil Trans R Soc London A 344:27–36

    CAS  Google Scholar 

  • Weedon MJ (1990) Shell structure and affinity of vermiform gastropods. Lethaia 23:297–309

    Google Scholar 

  • Weedon MJ (1991) Microstructure and affinity of the enigmatic Devonian tubular fossil Trypanipora. Lethaia 24:227–234

    Google Scholar 

  • Wright P, Cherns L, Hogdes P (2003) Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211–214

    Article  Google Scholar 

Download references

Acknowledgements

Paul Wright, Cardiff, and Oliver Weidlich, London, are thanked for constructive reviews

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethard Sanders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, D., Krainer, K. Taphonomy of Early Permian benthic assemblages (Carnic Alps, Austria): carbonate dissolution versus biogenic carbonate precipitation. Facies 51, 522–540 (2005). https://doi.org/10.1007/s10347-005-0065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0065-6

Keywords

Navigation