Skip to main content
Log in

Low survival after release into the wild: assessing “the burden of captivity” on Mallard physiology and behaviour

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Captive-reared animals used in reinforcement programs are generally less likely to survive than wild conspecifics. Digestion efficiency and naive behaviour are two likely reasons for this pattern. The Mallard is a species with high adaptability to its environment and in which massive reinforcement programs are carried out. We studied physiological and behavioural factors potentially affecting body condition and survival of captive-reared Mallards after being released. Digestive system morphology and an index of body condition were compared among three groups: captive-reared birds remaining in a farm (control), captive-reared birds released into the wild as juveniles (released) and wild-born birds (wild). We also compared behaviour and diet of released vs. wild Mallards. Finally, we conducted a 1-year survival analysis of captive-reared birds after release in a hunting-free area. Gizzard weight was lower in control Mallards, but the size of other organs did not differ between controls and wild birds. The difference in gizzard weight between released and wild birds disappeared after some time in the wild. Diet analyses suggest that released Mallards show a greater preference than wild for anthropogenic food (waste grain, bait). Despite similar time-budgets, released Mallards never attained the body condition of wild birds. As a consequence, survival probability in released Mallards was low, especially when food provisioning was stopped and during harsh winter periods. We argue that the low survival of released Mallards likely has a physiological rather than a behavioural (foraging) origin. In any case, extremely few released birds live long enough to potentially enter the breeding population, even without hunting. In the context of massive releases presently carried out for hunting purposes, our study indicates a low likelihood for genetic introgression by captive-reared birds into the wild population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aaltonen K, Bryant AA, Hostetler JA, Oli MK (2009) Reintroducing endangered Vancouver Island marmots: survival and cause-specific mortality rates of captive-born versus wild-born individuals. Biol Conserv 142:2181–2190. doi:10.1016/j.biocon.2009.04.019

    Article  Google Scholar 

  • Altmann J (1974) Observational study of behaviour: sampling methods. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  • Anderson DR, Burnham KP (1999) General strategies for the analysis of ringing data. Bird Study 46:261–270

    Article  Google Scholar 

  • Arzel C, Elmberg J, Guillemain M, Legagneux P, Bosca F, Chambouleyron M, Lepley M, Pin C, Arnaud A, Schricke V (2007) Average mass of seeds encountered by foraging dabbling ducks in western Europe. Wildl Biol 13:328–336

    Article  Google Scholar 

  • Aznar J-C, Dervieux A, Grillas P (2003) Association between aquatic vegetation and landscape indicators of human pressure. Wetlands 23:149–160

    Article  Google Scholar 

  • Bellrose CF (1985) The adaptability of the mallard leads to its future. Proceedings of the Mallard Symposium, Bismarck, North Dakota

  • Berthold P (2001) Bird migration: a general survey. Oxford University, Oxford

    Google Scholar 

  • Britt A, Iambana BR (2003) Can captive-bred Varecia variegata variegata adapt to a natural diet on release to the wild? Int J Primatol 24:987–1005

    Article  Google Scholar 

  • Brown JL, Collopy MW, Gott EJ, Juergens PW, Montoya AB, Hunt WG (2006) Wild-reared Aplomado falcons survive and recruit at higher rates than hacked falcons in a common environment. Biol Conserv 131:453–458. doi:10.1016/j.biocon.2006.02.021

    Article  Google Scholar 

  • Byers SM, Cary JR (1991) Discrimination of Mallard strains on the basis of morphology. J Wildl Manage 55:580–586

    Article  Google Scholar 

  • Champagnon J, Guillemain M, Gauthier-Clerc M, Lebreton J-D, Elmberg J (2009) Consequences of massive bird releases for hunting purposes: Mallard Anas platyrhynchos in the Camargue, southern France. Wildfowl Special Issue 2:192–201

    Google Scholar 

  • Champagnon J, Guillemain M, Elmberg J, Folkesson K, Gauthier-Clerc M (2010) Changes in Mallard Anas platyrhynchos bill morphology after thirty years of supplemental stocking. Bird Study 57:344–351

    Article  Google Scholar 

  • Chauvelon P (1998) A wetland managed for agriculture as an interface between the Rhône river and the Vaccarès lagoon (Camargue, France): transfers of water and nutrients. Hydrobiologia 373:181–191

    Article  Google Scholar 

  • Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M, Pradel R (2009a) U-CARE: utilities for performing goodness of fit tests and manipulating capture–recapture data. Ecography 32:1071–1074

    Article  Google Scholar 

  • Choquet R, Rouan L, Pradel R (2009b) Program E-Surge: a software application for fitting multievent models. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, New York, pp 845–865

    Chapter  Google Scholar 

  • Dawson RD, Bortolotti GR (2000) Effects of hematozoan parasites on condition and return rates of American kestrels. Auk 117:373–380

    Article  Google Scholar 

  • Dehorter O, Tamisier A (1996) Wetland habitat characteristics for waterfowl wintering in Camargue, Southern France: implications for conservation. Rev Ecol 51:161–172

    Google Scholar 

  • Del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Lynx Edicions, Barcelona

    Google Scholar 

  • Devries JH, Citta JJ, Lindberg MS, Howerter DW, Anderson MG (2003) Breeding-season survival of mallard females in the prairie pothole region of Canada. J Wildl Manage 67:551–563

    Article  Google Scholar 

  • Drobney RD (1984) Effect of diet on visceral morphology of breeding wood ducks. Auk 101:93–98

    Google Scholar 

  • Dunn J, Diefenbach D, Hartman F (1995) Survival and recovery distribution of wild and captive-reared mallards. Transactions of the Northeast Section of the Wildlife Society 52:21–28

    Google Scholar 

  • Fajardo I, Babiloni G, Mira Y (2000) Rehabilitated and wild barn owls (Tyto alba): dispersal, life expectancy and mortality in Spain. Biol Conserv 94:287–295. doi:10.1016/S0006-3207(00)00003-3

    Article  Google Scholar 

  • Fog J (1964) Dispersal and survival of released mallards (Anas platyrhynchos L.). Dan Rev Game Biol 4:1–57

    Google Scholar 

  • Guay P-J, Iwaniuk AN (2008) Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110:276–284

    Article  Google Scholar 

  • Guillemain M, Fritz H, Guillon N, Simon G (2002a) Ecomorphology and coexistence in dabbling ducks: the role of lamellar density and body length. Oikos 98:547–551

    Article  Google Scholar 

  • Guillemain M, Martin GR, Fritz H (2002b) Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Funct Ecol 16:522–529

    Article  Google Scholar 

  • Guillemain M, Poisbleau M, Denonfoux L, Lepley M, Moreau C, Massez G, Leray G, Caizergues A, Arzel C, Rodrigues D, Fritz H (2007) Multiple tests of the effect of nasal saddles on dabbling ducks: combining field and aviary approaches. Bird Study 54:35–45

    Article  Google Scholar 

  • Guillemain M, Lepley M, Massez G, Caizairgues A, Rodrigues D, Figueiredo M (2008) Addendum: Eurasian Teal Anas crecca nasal saddle loss in the Camargue, France. Bird Study 55:135–138

    Article  Google Scholar 

  • Guillemain M, Elmberg J, Gauthier-Clerc M, Massez G, Hearn R, Champagnon J, Simon G (2010) Wintering French Mallard and Teal are heavier and in better body condition than 30 years ago: effects of a changing environment? Ambio 39:170–180

    Article  PubMed  Google Scholar 

  • Gunnarsson G, Elmberg J, Dessborn L, Jonzén N, Pöysä H, Valkama J (2008) Survival estimates, mortality patterns, and population growth of Fennoscandian mallards Anas platyrhynchos. Ann Zool Fenn 45:483–495

    Google Scholar 

  • Hargrove JW, Borland CH (1994) Pooled population parameter estimates from mark-recapture data. Biometrics 50:1129–1141

    Article  PubMed  CAS  Google Scholar 

  • Hart RK, Calver MC, Dickman CR (2002) The index of relative importance: an alternative approach to reducing bias in descriptive studies of animal diets. Wildl Res 29:415–421. doi:10.1071/WR02009

    Article  Google Scholar 

  • Havlin J (1991) Ringing results in hand-reared Anas platyrhynchos. Folia Zool 40:153–165

    Google Scholar 

  • Hestbeck JB, Dzubin A, Gollop JB, Nichols JD (1989) Mallard survival from local to immature stage in southwestern Saskatchewan. J Wildl Manage 53:428–431

    Article  Google Scholar 

  • Hodder K, Bullock J (1997) Translocations of native species in the UK: implications for biodiversity. J Appl Ecol 34:547–565

    Article  Google Scholar 

  • Jule KR, Leaver LA, Lea SE (2008) The effects of captive experience on reintroduction survival in carnivores: a review and analysis. Biol Conserv 141:355–363

    Article  Google Scholar 

  • Kayser Y, Gauthier-Clerc M, Béchet A, Poulin B, Massez G, Chérain Y, Paoli J, Sadoul N, Vialet E, Paulus G, Vincent-Martin N, Pilard P, Isenmann P (2008) Compte-rendu ornithologique camarguais pour les années 2001–2006. Rev Ecol 63:299–349

    Google Scholar 

  • Kehoe FP, Ankney CD, Alisauskas RT (1988) Effects of dietary fiber and diet diversity on digestive organs of captive mallards (Anas platyrhynchos). Can J Zool 66:1597–1602. doi:10.1139/z88-233

    Article  Google Scholar 

  • Krapu GL, Johnson DH, Dane CW (1979) Age determination of mallards. J Wildl Manage 43:384–393

    Article  Google Scholar 

  • Laikre L, Palmé A, Josefsson M, Utter F, Ryman N (2006) Release of alien populations in Sweden. Ambio 35:255–261

    Article  PubMed  Google Scholar 

  • Laikre L, Schwartz MK, Waples RS, Ryman N, The GeM Working Group (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. TREE 25:520–529

    PubMed  Google Scholar 

  • Lambert E, Dutartre A, Coudreuse J, Haury J (2010) Relationships between the biomass production of invasive Ludwigia species and physical properties of habitats in France. Hydrobiologia 656:173–186

    Article  Google Scholar 

  • Latorre-Margalef N, Gunnarsson G, Munster VJ, Fouchier RA, Osterhaus AD, Elmberg J, Olsen B, Wallensten A, Haemig PD, Fransson T, Brudin L, Waldenström J (2009) Effects of influenza A virus infection on migrating mallard ducks. Proc R Soc Lond B 276:1029–1036

    Article  Google Scholar 

  • Le Gouar P, Robert A, Choisy J-P, Henriquet S, Lecuyer P, Tessier C, Sarrazin F (2008) Roles of survival and dispersal in reintroduction success of griffon vulture (Gyps fulvus). Ecol Appl 18:859–872

    Article  PubMed  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. doi:10.2307/2937171

    Article  Google Scholar 

  • Legagneux P, Inchausti P, Bourguemestre F, Latraube F, Bretagnolle V (2009) Effect of predation risk, body size, and habitat characteristics on emigration decisions in mallards. Behav Ecol 20:186–194

    Article  Google Scholar 

  • Liukkonen-Anttila T, Saartoala R, Hissa R (2000) Impact of hand-rearing on morphology and physiology of the Capercaillie (Tetrao urogallus). Comp Biochem Physiol A 125:211–221. doi:10.1016/S1095-6433(99)00174-9

    CAS  Google Scholar 

  • Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Ann Rev Ecol Syst 18:453–487

    Article  Google Scholar 

  • Mathews F, Orros M, McLaren G, Gelling M, Foster R (2005) Keeping fit on the ark: assessing the suitability of captive-bred animals for release. Biol Conserv 121:569–577

    Article  Google Scholar 

  • McWilliams SR, Karasov WH (2001) Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comp Biochem Physiol A 128:577–591

    Article  Google Scholar 

  • Moore SJ, Battley PF (2006) Differences in the digestive organ morphology of captive and wild Brown Teal Anas chlorotis and implications for releases. Bird Conserv Int 16:253–264. doi:10.1017/S0959270906000396

    Article  Google Scholar 

  • Mouronval J-B, Baudouin S (2010) Plantes aquatiques de Camargue et de Crau. Office National de la Chasse et de la Faune Sauvage, Paris

    Google Scholar 

  • Mouronval J-B, Guillemain M, Canny A, Poirier F (2007) Diet of non-breeding wildfowl Anatidae and Coot Fulica atra on the Perthois gravel pits, Northeast France. Wildfowl 57:68–97

    Google Scholar 

  • Musil DD, Connelly JW (2009) Survival and reproduction of pen-reared vs translocated wild pheasants Phasianus colchicus. Wildl Biol 15:80–88. doi:10.2981/07-049

    Article  Google Scholar 

  • Mysterud A (2010) Still walking on the wild side? Management actions as steps towards semi-domestication of hunted ungulates. J Appl Ecol 47:920–925

    Article  Google Scholar 

  • Naya DE, Bacigalupe LD, Bustamante DM, Bozinovic F (2005) Dynamic digestive responses to increased energy demands in the leaf-eared mouse (Phyllotis darwini). J Comp Physiol B 175:31–36

    Article  PubMed  Google Scholar 

  • Newton I (2007) Weather-related mass-mortality events in migrants. Ibis 149:453–467

    Article  Google Scholar 

  • Nichols J, Hines JE (1993) Survival rate estimation in the presence of tag loss using joint analysis of capture–recapture and resighting data. In: Lebreton J-D, North P (eds) Marked individuals in the study of bird populations. Birkhäuser Verlag, Boston, pp 157–166

    Google Scholar 

  • O’Regan HJ, Kitchener AC (2005) The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm Rev 35:215–230

    Article  Google Scholar 

  • Parish DMB, Sotherton NW (2007) The fate of released captive-reared grey partridges Perdix perdix: implications for reintroduction programmes. Wildl Biol 13:140–149. doi:10.2981/0909-6396

    Article  Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

    Article  Google Scholar 

  • Pinkas L, Oliphant M, Iverson I (1971) Food habits of albacore, bluefin tuna, and bonito in California waters. Fish Bull 152:11–105

    Google Scholar 

  • Pradel R (1993) Flexibility in survival analysis from recapture data: handling trap-dependence. In: Lebreton J-D, North P (eds) Marked individuals in the study of bird population. Birkhäuser Verlag, Boston, pp 29–37

    Google Scholar 

  • Putman RJ, Staines BW (2004) Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mamm Rev 34:285–306

    Article  Google Scholar 

  • Roche EA, Cuthbert FJ, Arnold TW (2008) Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population? Biol Conserv 141:3079–3088. doi:10.1016/j.biocon.2008.09.014

    Article  Google Scholar 

  • Santos T, Pérez-Tris J, Carbonell R, Tellería JL, Díaz JA (2009) Monitoring the performance of wild-born and introduced lizards in a fragmented landscape: implications for ex situ conservation programmes. Biol Conserv 142:2923–2930

    Article  Google Scholar 

  • Schladweiler JL, Tester JR (1972) Survival and behaviour of hand-reared mallards released in the wild. J Wildl Manage 36:1118–1127

    Article  Google Scholar 

  • Suter W, van Eerden MR (1992) Simultaneous mass starvation of wintering divingducks in Switzerland and the Netherlands: a wrong decision in the right strategy. Ardea 80:229–242

    Google Scholar 

  • Swanson G, Bartonek J (1970) Bias associated with food analysis in gizzards of blue-winged Teal. J Wildl Manage 34:739–746

    Article  Google Scholar 

  • Tamisier A, Dehorter O (1999) Camargue, canards et foulques. Centre Ornithologique du Gard, Nîmes

    Google Scholar 

  • Tavecchia G, Pradel R, Lebreton J-D, Johnson AR, Mondain-Monval J-Y (2001) The effect of lead exposure on survival of adult mallards in the Camargue, southern France. J Appl Ecol 38:1197–1207

    Article  CAS  Google Scholar 

  • Tavecchia G, Viedma C, Martínez-Abraín A, Bartolomé M-A, Gómez JA, Oro D (2009) Maximizing re-introduction success: assessing the immediate cost of release in a threatened waterfowl. Biol Conserv 142:3005–3012. doi:10.1016/j.biocon.2009.07.035

    Article  Google Scholar 

  • Thomson DL, Conroy MJ, Anderson DR, Burnham KP, Cooch EG, Francis CM, Lebreton J-D, Lindberg MS, Morgan BJ, Otis DL, White GC (2009) Standardising terminology and notation for the analysis of demographic processes in marked populations. In: Thomson DL, Cooch EG, Conroy MJ (eds) Environmental and ecological statistics. Springer, New York, pp 1099–1106

    Google Scholar 

  • Tufto J (2001) Effects of releasing maladapted individuals: a demographic–evolutionary model. Am Nat 158:331–340. doi:10.1086/321987

    Article  PubMed  CAS  Google Scholar 

  • Watkins EJ, Butler PJ, Kenyon BP (2004) Posthatch growth of the digestive system in wild and domesticated ducks. Br Poult Sci 45:331–341

    Article  PubMed  CAS  Google Scholar 

  • Whyte RJ, Bolen EG (1984) Impact of winter stress on Mallard body composition. Condor 86:477–482

    Article  Google Scholar 

Download references

Acknowledgements

The control Mallards were sacrificed in conformity with the French legal requirement by Elevage Bravo (FR 30-033-111 CE). We are grateful to Marais du Vigueirat and Vincent Milla (Elevage des Courrèges) to let us conduct this experiment with their collaboration, the Centre de Recherche sur la Biologie des Populations d’Oiseaux (Muséum National d’Histoire Naturelle, Paris) for providing rings and Quentin Charel for preparing the nasal saddles. We thank all hunters who sent back rings and all landowners and game keepers who provided Mallards from hunting bags: Mr. Herbinger and Mr. Aubert, Mr. Nourry, Mr. Sire, Mr. Razier and Mr. Cordesse. Dissection was performed by Mathieu Famette, and JC. Jean-Baptiste Mouronval, Mathieu Famette and Antony Marchet identified seeds in gut contents. Additional field observations of marked birds were provided by Fanny Rey, Charlène Stewart, Adrien Raggiotto, Aude Pouyès, Aurélien Villard and Sylvain Ceyte. We thank Jean-Dominique Lebreton and Jean-Baptiste Mouronval for comments that greatly helped in preparing the manuscript. This work was partially funded by the French “Agence Inter-établissement pour la Recherche et le Développement”. JE’s participation was supported by grant V-205-09 from the Swedish Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Champagnon.

Additional information

Communicated by H. Kierdorf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champagnon, J., Guillemain, M., Elmberg, J. et al. Low survival after release into the wild: assessing “the burden of captivity” on Mallard physiology and behaviour. Eur J Wildl Res 58, 255–267 (2012). https://doi.org/10.1007/s10344-011-0573-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-011-0573-3

Keywords

Navigation