Skip to main content
Log in

Testing copula regression against benchmark models for point and interval estimation of tree wood volume in beech stands

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study compares copula regression, recently introduced in the forest biometric literature, with four benchmark regression models for computing wood volume V in forest stands given the values of diameter at breast height D and total height H, and suggests a set of statistical techniques for the accurate assessment of model performance. Two regression models deduced from the trivariate copula-based distribution of VD, and H are tested against the classical Spurr’s model and Schumacher-Hall’s model based on allometric and geometric concepts, and two regression models that rely on Box-Cox transformed variables and are in a middle ground, in terms of model complexity, between copula-based regression and classical models. The accuracy of the point estimates of V is assessed by a suitable set of performance criteria and the nonparametric sign test, whereas the associated uncertainty is evaluated by comparing empirical and nominal coverage probabilities of the prediction intervals. Focusing on point estimates, the Schumacher-Hall’s model outperforms the other models in terms of several performance criteria. The sign test points out that the differences among the models that involve D and H as separate covariates are not definitely significant, whereas these models outperform the models with a single covariate. As far as the interval estimates are of concern, the four benchmark models provide comparable interval estimates. The copula-based model with parametric marginals is definitely outperformed by its competitors according to all criteria, whereas the copula-based model with nonparametric marginals provides quite accurate point estimates but biased interval estimates of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2:49–53

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26(2):211–252

    Google Scholar 

  • Christakos G (2011) Integrative problem-solving in a time of decadence. Springer, London, UK

    Book  Google Scholar 

  • Cienciala E, Èerný M, Apltauer J, Exnerová Z (2005) Biomass functions applicable to European beech. J For Sci 51(4):147–154

    Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610

    Article  Google Scholar 

  • Cunia T (1979a) On tree biomass tables and regression: some statistical comments. In: Freyer WE (ed) Forest resource inventories, workshop proceedings, vol 2. Colorado State University, Colorado, pp 629–642

  • Cunia T (1979b) On sampling trees for biomass tables construction: some statistical comments. In: Freyer WE (ed) Forest resource inventories, workshop proceedings, vol 2. Colorado State University, Colorado, pp 643–664

  • Dawson CW, Abrahart RJ, See LM (2007) Hydrotest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ Modell Softw 22:1034–1052

    Article  Google Scholar 

  • Eamus D, Burrows W, McGuinness K, Australian Greenhouse Office (2000) Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. Australian Greenhouse Office, Canberra, http://nla.gov.au/nla.arc-23322

  • Embrechts P (2009) Copulas: a personal view. J Risk Insur 76(3):639–650

    Article  Google Scholar 

  • Fox J (2006) car: companion to applied regression. http://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/, R package version 1.2-1

  • Furnival GM (1961) An index for comparing equations used in constructing volume tables. For Sci 7:337–341

    Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rémillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann de l’Institut Henri Poincaré-Probabilités et Statistiques 44(6):1096–1127. doi:10.1214/07-AIHP148

    Article  Google Scholar 

  • Genest C, Gendron M, Bourdeau-Brien M (2009) The advent of copulas in finance. Eur J Finance 15(7–8):609–618. doi:10.1080/13518470802604457

    Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B 52:105–124

    Google Scholar 

  • Hosking JRM (1994) The four-parameter kappa distribution. IBM J Res Dev 38:251–258. doi:10.1147/rd.383.0251

    Article  Google Scholar 

  • Hosking JRM (2009) L-moments. http://CRAN.R-project.org/package=lmom, R package, version 1.5

  • Hutson AD (2002) A semi-parametric quantile function estimator for use in bootstrap estimation procedures. Stat Comput 12:331–338

    Article  Google Scholar 

  • Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22:679–688

    Article  Google Scholar 

  • Jachner S, van den Boogaart KG, Petzoldt T (2007) Statistical methods for the qualitative assessment of dynamic models with time delay. J Stat Softw 22(8):1–30. doi:10.1007/s00703-006-0199-2

    Google Scholar 

  • Joe H (2006) Discussion of copulas: tales and facts, by Thomas Mikosch. Extremes 9:37–41. doi:10.1007/s10687-006-0019-6

    Article  Google Scholar 

  • Keith H, Barrett D, Keenan R, Australian Greenhouse Office (2000) Review of allometric relationships for estimating woody biomass for New South Wales, the Australian Capital Territory, Victoria, Tasmania and South Australia. Australian Greenhouse Office, Canberra, http://nla.gov.au/nla.arc-23322

  • Kelly KS, Krzysztofowicz R (1997) A bivariate meta-gaussian density for use in hydrology. Stoch Hydrol Hydraul 11:17–31

    Article  Google Scholar 

  • Kershaw JA Jr, Richards EW, McCarter JB, Oborn S (2010) Original paper: spatially correlated forest stand structures: a simulation approach using copulas. Comput Electron Agric 74:120–128. doi:10.1016/j.compag.2010.07.005

    Article  Google Scholar 

  • Kitanidis PK, Bras RL (1980) Real-time forecasting with a conceptual hydrologic model: 2. Application and results. Water Resour Res 16(6):1034–1044

    Article  Google Scholar 

  • Kojadinovic I, Yan J (2011) A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat Comput 21:17–30. doi:10.1007/s11222-009-9142-y

    Article  Google Scholar 

  • Kottegoda NT, Rosso R (2008) Applied statistics for civil and environmental engineers. 2nd edn. Wiley, New York

    Google Scholar 

  • Kvålseth TO (1985) Cautionary note about R2. Am Stat 39(4):279–285

    Google Scholar 

  • Leggett RW, Williams LR (1981) A reliability index for models. Ecol Model 13:303–312

    Article  Google Scholar 

  • Lehmann EL (1975) Nonparametrics, statistical methods based on ranks. McGraw-Hill, San Francisco

    Google Scholar 

  • Mac Berthouex P, Brown LC (2002) Statistics for environmental engineers. 2nd edn. Lewis Publishers/CRC Press, Boca Raton

    Google Scholar 

  • Mercier G, Bouchemakh L, Smara Y (2007) The use of multidimensional copulas to describe amplitude distribution of polarimetric SAR data. In: Geoscience and remote sensing symposium, 2007. IGARSS 2007. IEEE International, pp 2236–2239 doi:10.1109/IGARSS.2007.4423284

  • Meyer HA (1934) Die rechnerischen grundlagen der kontrollmethode. Beiheft zu den Zeitschriften der Forstvereins 13:122

    Google Scholar 

  • Khan NI, Farugue O (2010) Allometric relationships for predicting the stem volume in a dalbergia sissoo roxb. plantation in Bangladesh. iForest 3:153–158, doi:10.3832/ifor0554-003, http://www.sisef.it/iforest/show.php?id=554

  • Montanari A, Brath A (2004) A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour Res 40:W01,106. doi:10.1029/2003WR002540

  • Montanari A, Grossi G (2008) Estimating the uncertainty of hydrological forecasts: a statistical approach. Water Resour Res 44:W00B08. doi:10.1029/2008WR006897

    Article  Google Scholar 

  • Mood AM, Graybill FA, Boes DC (1974) Introduction to the theory of statistics. 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Napolitano G, Serinaldi F, See L (2011) Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination. J Hydrol 406(3–4):199–214. doi:10.1016/j.jhydrol.2011.06.015

    Article  Google Scholar 

  • Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. 2nd edn. Springer, New York

    Google Scholar 

  • Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593

    Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and Splus. Springer, New York, NY

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-93

  • R Development Core Team (2009) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0

  • Reusser DE, Blume T, Schaefli B, Zehe E (2009) Analysing the temporal dynamics of model performance for hydrological models. Hydrol Earth Syst Sci 13:999–1018

    Article  Google Scholar 

  • Robinson AP, Hamann JD (2011) Forest analytics with R: an introduction. 1st edn. Springer, New York

    Book  Google Scholar 

  • Rupšys P, Petrauskas E (2010) Development of q-exponential models for tree height, volume and stem profile. Int J Phys Sci 5(15):2369–2378

    Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12(4):369–380

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Springer, New York

    Google Scholar 

  • Schaefli B, Gupta HV (2007) Do Nash values have value? Hydrol Process 21:2075–2080

    Article  Google Scholar 

  • Schumacher F, Hall FDS (1933) Logarithmic expression of timber tree volume. J Agric Res 47:719–734

    Google Scholar 

  • Serinaldi F (2009) Assessing the applicability of fractional order statistics for computing confidence intervals for extreme quantiles. J Hydrol 376(3–4):528–541

    Google Scholar 

  • Serinaldi F (2011) Analytical confidence intervals for index flow flow duration curves. Water Resour Res 47:W02,542. doi:10.1029/2010WR009408

  • Sklar A (1959) Fonction de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8:229–231

    Google Scholar 

  • Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64:209–210

    Article  Google Scholar 

  • Spurr SH (1952) Forest inventory. Ronald Press Co., New York, NY

    Google Scholar 

  • Tabacchi G, Di Cosmo L, Gasparini P (2011) Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur J For Res 1–24. doi:10.1007/s10342-011-0481-9

  • Ter–Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manage 97(1):1–24. doi:10.1016/S0378-1127(97)00019-4

    Article  Google Scholar 

  • Tsallis C (2004) What should a statistical mechanics satisfy to reflect nature? Phys D Nonlinear Phenomena 193:3–34

    Article  Google Scholar 

  • Villarini G, Serinaldi F, Krajewski WF (2008) Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches. Adv Water Resour 31:1674–1686

    Article  Google Scholar 

  • Wang M, Upadhyay A, Zhang L (2010) Trivariate distribution modeling of tree diameter, height, and volume. For Sci 56(3):290–300

    Google Scholar 

  • West PW (2009) Tree and forest measurement. 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Williams MS, Schreuder HT (2000) Guidelines for choosing volume equations in the presence of measurement error in height. Can J For Res 30:306–310

    Article  Google Scholar 

  • Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21(4):1–21

    Google Scholar 

  • Zianis D, Mencuccini M (2004) On simplifying allometric analyses of forest biomass. For Ecol Manage 187(2–3):311–332. doi:10.1016/j.foreco.2003.07.007

    Article  Google Scholar 

  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4:1–63

    Google Scholar 

  • Zianis D, Xanthopoulos G, Kalabokidis K, Kazakis G, Ghosn D, Roussou O (2011) Allometric equations for aboveground biomass estimation by size class for Pinus Brutia Ten. trees growing in North and South Aegean Islands, Greece. Eur J For Res 130(2):145–160

    Article  Google Scholar 

Download references

Acknowledgments

The subject Editor Dr. Gerald Kändler (FVA Baden-Württemberg, Germany) and an anonymous reviewer are gratefully acknowledged for their valuable comments. The authors thank the late Prof. Loris Paganucci at the former Istituto di Assestamento e Tecnologia Forestale (Università di Firenze, Italy) for providing the tree measurement data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Serinaldi.

Additional information

Communicated by G. Kändler.

Appendix

Appendix

Proof of Eq. 8. From the definition of conditional expectation, we have

$$ \begin{aligned} E[V|d,h] & = \int\limits^{\infty}_{0} v f_{V|d,h}(v|d,h)\hbox{d}v\\ &=\int\limits^{\infty}_{0} v \frac{f_{VDH}(v,d,h)}{f_{DH}(d,h)}\hbox{d}v\\ &=\int\limits^{\infty}_{0} v \left[ \frac{\frac{\partial ^3F_{VDH}(v,d,h)}{\partial v \partial d \partial h}} {\frac{\partial ^2F_{DH}(d,h)}{\partial d \partial h}} \right] \hbox{d}v\\ &=\int\limits^{\infty}_{0} v \left[ \frac{\frac{\partial ^3C_{VDH}(F_V(v),F_D(d),F_H(h))}{\partial F_V(v) \partial F_D(d) \partial F_H(h)}}{\frac{\partial ^2C_{DH}(F_D(d),F_H(h))}{\partial F_D(d) \partial F_H(h)}}\right] f_V(v)\hbox{d}v. \end{aligned} $$
(17)

Then, setting up u V  = F V (v), u D  = F D (d), and u H  = F H (h), it follows that

$$ \begin{aligned} E[V|u_D,u_H] & =\int\limits^{1}_{0} F^{-1}_{V}(u_V) \left[ \frac{\frac{\partial ^3C_{VDH}(u_V,u_D,u_H)}{\partial u_V \partial u_D \partial u_H}} {\frac{\partial ^2C_{DH}(u_D,u_H)}{\partial u_D \partial u_H}} \right] \hbox{d}u_V \\ & =\frac{1}{\frac{\partial ^2C_{DH}(u_D,u_H)}{\partial u_D \partial u_H}} \int\limits^{1}_{0} F^{-1}_{V}(u_V) \frac{\partial ^3C_{VDH}(u_V,u_D,u_H)}{\partial u_V \partial u_D \partial u_H}\hbox{d}u_V. \end{aligned} $$
(18)

Since \(E[V|F_D(d),F_H(h)] =\left. E[V|u_D,u_H]\right| _{\mathop{u_D=F_{D}(d)}\limits_{u_H=F_{H}(h)}},\) thus Eq. 8 follows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serinaldi, F., Grimaldi, S., Abdolhosseini, M. et al. Testing copula regression against benchmark models for point and interval estimation of tree wood volume in beech stands. Eur J Forest Res 131, 1313–1326 (2012). https://doi.org/10.1007/s10342-012-0600-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0600-2

Keywords

Navigation