Skip to main content
Log in

Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Background

Power spectral analysis of heart rate variability is used to assess cardiac autonomic function. The relationship of low frequency (LF) power to cardiac sympathetic tone has been unclear. We reported previously that LF power may reflect baroreflex modulation. In this study we attempted to replicate our findings in additional subject cohorts, taking into account possible influences of respiration and using different methods to measure baroreflex-cardiovagal gain (BCG).

Objective

We assessed relationships of LF power, including respiration-adjusted LF power (LFa), with cardiac sympathetic innervation and baroreflex function in subjects with or without neuroimaging evidence of cardiac sympathetic denervation.

Methods

Values for LF power at baseline supine, seated, and during the Valsalva maneuver were compared between subject groups with low or normal myocardial concentrations of 6-[18F]fluorodopamine-derived radioactivity. BCG was calculated from the slope of cardiac interbeat interval vs. systolic pressure during Phase II of the Valsalva maneuver or after i.v. nitroglycerine injection (the Oxford technique).

Results

LF and LFa were unrelated to myocardial 6-[18F]fluorodopamine-derived radioactivity. During sitting rest and the Valsalva maneuver logs of LF and LFa correlated positively with the log of Phase II BCG (r = 0.61, p = 0.0005; r = 0.47, p = 0.009; r = 0.69, p < 0.0001; r = 0.60, p = 0.0006). Groups with Low BCG (≤3 ms/mmHg) had low LF and LFa regardless of cardiac innervation. The log of LF power during supine rest correlated with the log of Oxford BCG (r = 0.74, p < 0.0001).

Conclusion

LF power, with or without respiratory adjustment, reflects baroreflex modulation and not cardiac sympathetic tone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BCG:

Baroreflex-cardiovagal gain

HF:

High frequency

HFa:

Adjusted high frequency power

LF:

Low frequency

LFa:

Adjusted low frequency power

References

  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  PubMed  CAS  Google Scholar 

  2. Alvarenga ME, Richards JC, Lambert G, Esler MD (2006) Psychophysiological mechanisms in panic disorder: a correlative analysis of noradrenaline spillover, neuronal noradrenaline reuptake, power spectral analysis of heart rate variability, and psychological variables. Psychosom Med 68:8–16

    Article  PubMed  Google Scholar 

  3. Aysin B, Aysin E (2006) Effect of respiration in heart rate variability (HRV) analysis. Conf Proc IEEE Eng Med Biol Soc 1:1776–1779

    PubMed  Google Scholar 

  4. Baumert M, Lambert GW, Dawood T, Lambert EA, Esler MD, McGrane M, Barton D, Sanders P, Nalivaiko E (2009) Short-term heart rate variability and cardiac norepinephrine spillover in patients with depression and panic disorder. Am J Physiol Heart Circ Physiol 297:H674–H679

    Article  PubMed  CAS  Google Scholar 

  5. Creager MA (1992) Baroreceptor reflex function in congestive heart failure. Am J Cardiol 69:10G–15G discussion 15G-16G

    Article  PubMed  CAS  Google Scholar 

  6. Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667–1676

    PubMed  CAS  Google Scholar 

  7. Goldstein DS (2001) The autonomic nervous system in health and disease. Marcel Dekker, New York

    Google Scholar 

  8. Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2:669–676

    Article  PubMed  Google Scholar 

  9. Goldstein DS, Eisenhofer G, Dunn BB, Armando I, Lenders J, Grossman E, Holmes C, Kirk KL, Bacharach S, Adams R et al (1993) Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22:1961–1971

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein DS, Holmes C, Li ST, Bruce S, Metman LV, Cannon RO 3rd (2000) Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 133:338–347

    PubMed  CAS  Google Scholar 

  11. Goldstein DS, Horwitz D, Keiser HR (1982) Comparison of techniques for measuring baroreflex sensitivity in man. Circulation 66:432–439

    PubMed  CAS  Google Scholar 

  12. Goldstein DS, Orimo S (2009) Cardiac sympathetic neuroimaging: summary of the First International Symposium. Clin Auton Res 19:133–136

    Article  Google Scholar 

  13. Goldstein DS, Pechnik S, Holmes C, Eldadah B, Sharabi Y (2003) Association between supine hypertension and orthostatic hypotension in autonomic failure. Hypertension 42:136–142

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein DS, Tack C (2000) Non-invasive detection of sympathetic neurocirculatory failure. Clin Auton Res 10:285–291

    Article  PubMed  CAS  Google Scholar 

  15. Haensch CA, Lerch H, Jorg J, Isenmann S (2009) Cardiac denervation occurs independent of orthostatic hypotension and impaired heart rate variability in Parkinson’s disease. Parkinsonism Relat Disord 15:134–137

    Article  PubMed  Google Scholar 

  16. Kaufmann H (1996) Consensus statement on the definition of orthostatic hypotension, pure autonomic failure and multiple system atrophy. Clin Auton Res 6:125–126

    Article  PubMed  CAS  Google Scholar 

  17. Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD (1994) Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation 90:234–240

    PubMed  CAS  Google Scholar 

  18. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y (2007) Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm 4:1523–1529

    Article  PubMed  Google Scholar 

  19. Ng J, Sundaram S, Kadish AH, Goldberger JJ (2009) Autonomic effects on the spectral analysis of heart rate variability after exercise. Am J Physiol Heart Circ Physiol 297:H1421–H1428

    Article  PubMed  CAS  Google Scholar 

  20. Orimo S, Oka T, Miura H, Tsuchiya K, Mori F, Wakabayashi K, Nagao T, Yokochi M (2002) Sympathetic cardiac denervation in Parkinson’s disease and pure autonomic failure but not in multiple system atrophy. J Neurol Neurosurg Psychiatry 73:776–777

    Article  PubMed  CAS  Google Scholar 

  21. Pickering TG, Sleight P (1969) Quantitative index of baroreflex activity in normal and hypertensive subjects using Valsalva’s manoeuvre. Br Heart J 31:392

    PubMed  CAS  Google Scholar 

  22. Sleight P, La Rovere MT, Mortara A, Pinna G, Maestri R, Leuzzi S, Bianchini B, Tavazzi L, Bernardi L (1995) Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clin Sci (Lond) 88:103–109

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute of Neurological Disorders and Stroke. Ms. Tereza Jenkins coordinated patient travel. Division of Intramural Research, NINDS, NIH. The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, F., Pechnik, S., Gross, D. et al. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res 21, 133–141 (2011). https://doi.org/10.1007/s10286-010-0098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-010-0098-y

Keywords

Navigation