Skip to main content
Log in

Heart rate variability in preterm infants and maternal smoking during pregnancy

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Objective

Tobacco smoke exposure increases the risk of premature birth and of dying of sudden infant death syndrome (SIDS). Prematurity significantly increases the risk of dying of SIDS, but mechanisms underlying this epidemiological finding are unclear. The cumulated effect of both prematurity and prenatal exposure to nicotine on autonomic heart rate control has not been studied.

Methods

Using coarse-graining spectral analysis, we compared heart rate variability (HRV) indices of preterm newborns at 33–34 weeks post-conceptional age from smoking (n = 19) and non-smoking (n = 21) mothers. Assessment of tobacco exposure relied on maternal reports and newborns cotinine analysis. We observed how indicators of HRV depended on gestational age at birth.

Results

At 33–34 weeks postconceptional age, the newborns from smoking mothers had lower HRV low frequency power normalised to the total spectral power (LF/TP) than the control group (median values: 8% vs. 15% respectively, p < 0.02). In the non-smoking group, RR-interval values and total HRV power were correlated with gestational age at birth, with a shorter RR and a lower total HRV power in lesser gestational ages (ρ = 0.67, p = 0.03, ρ = 0.71, p = 0.003 respectively). This correlation was not observed for RR values in the group with smoking mothers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GA:

Gestational age at birth

PCA:

Postconceptional age

HRV:

Heart rate variability

LF:

Low frequency band of HRV (0–0.2 Hz)

HF:

High frequency band of HRV (0.2–2 Hz)

TP:

Total spectral power of HRV

HF/TP:

HF power normalised to the total spectral power

LF/TP:

LF power normalised to the total spectral power

SIDS:

Sudden infant death syndrome

References

  1. Browne CA, Colditz PB, Dunster KR (2000) Infant autonomic function is altered by maternal smoking during pregnancy. Early Hum Dev 59:209–218

    Article  PubMed  CAS  Google Scholar 

  2. Bruckert E, Jacob N, Lamaire L, Truffert J, Percheron F, de Gennes JL (1992) Relationship between smoking status and serum lipids in a hyperlipidemic population and analysis of possible confounding factors. Clin Chem 38:1698–1705

    PubMed  CAS  Google Scholar 

  3. Bureau MA, Shapcott D, Berthiaume Y, Monette J, Blouin D, Blanchard P, Begin R (1983) Maternal cigarette smoking and fetal oxygen transport: a study of P50, 2, 3-diphosphoglycerate, total hemoglobin, hematocrit, and type F hemoglobin in fetal blood. Pediatrics 72:22–26

    PubMed  CAS  Google Scholar 

  4. Burguet A, Kaminski M, Truffert P, Menget A, Marpeau L, Voyer M, Roze JC, Escande B, Cambonie G, Hascoet JM, Grandjean H, Breart G, Larroque B (2005) Does smoking in pregnancy modify the impact of antenatal steroids on neonatal respiratory distress syndrome? Results of the Epipage study. Arch Dis Child Fetal Neonatal Ed 90:F41–F45

    Article  PubMed  CAS  Google Scholar 

  5. Buttigieg J, Brown S, Zhang M, Lowe M, Holloway AC, Nurse CA (2008) Chronic nicotine in utero selectively suppresses hypoxic sensitivity in neonatal rat adrenal chromaffin cells. FASEB J 22:1317–1326

    Article  PubMed  CAS  Google Scholar 

  6. Cohen G, Roux JC, Grailhe R, Malcolm G, Changeux JP, Lagercrantz H (2005) Perinatal exposure to nicotine causes deficits associated with a loss of nicotinic receptor function. Proc Natl Acad Sci USA 102:3817–3821

    Article  PubMed  CAS  Google Scholar 

  7. Dempsey D, Jacob P 3rd, Benowitz NL (2000) Nicotine metabolism and elimination kinetics in newborns. Clin Pharmacol Ther 67:458–465

    Article  PubMed  CAS  Google Scholar 

  8. Eiselt M, Curzi-Dascalova L, Clairambault J, Kauffmann F, Medigue C, Peirano P (1993) Heart-rate variability in low-risk prematurely born infants reaching normal term: a comparison with full-term newborns. Early Hum Dev 32:183–195

    Article  PubMed  CAS  Google Scholar 

  9. Fortrat JO (2002) Inaccurate normal values of heart rate variability spectral analysis in newborn infants. The American journal of cardiology 90:346

    Article  PubMed  Google Scholar 

  10. Fox NA (1983) Maturation of autonomic control in preterm infants. Dev Psychobiol 16:495–504

    Article  PubMed  CAS  Google Scholar 

  11. Franco P, Chabanski S, Szliwowski H, Dramaix M, Kahn A (2000) Influence of maternal smoking on autonomic nervous system in healthy infants. Pediatr Res 47:215–220

    Article  PubMed  CAS  Google Scholar 

  12. Franco P, Szliwowski H, Dramaix M, Kahn A (1998) Polysomnographic study of the autonomic nervous system in potential victims of sudden infant death syndrome. Clin Auton Res 8:243–249

    Article  PubMed  CAS  Google Scholar 

  13. Grenhoff J, Svensson TH (1989) Pharmacology of nicotine. British journal of addiction 84:477–492

    Article  PubMed  CAS  Google Scholar 

  14. Hafstrom O, Milerad J, Sandberg KL, Sundell HW (2005) Cardiorespiratory effects of nicotine exposure during development. Respiratory physiology & neurobiology 149:325–341

    Article  Google Scholar 

  15. Huang ZG, Wang X, Dergacheva O, Mendelowitz D (2005) Prenatal nicotine exposure recruits an excitatory pathway to brainstem parasympathetic cardioinhibitory neurons during hypoxia/hypercapnia in the rat: implications for sudden infant death syndrome. Pediatr Res 58:562–567

    Article  PubMed  CAS  Google Scholar 

  16. Jarvis MJ, Russell MA, Benowitz NL, Feyerabend C (1988) Elimination of cotinine from body fluids: implications for noninvasive measurement of tobacco smoke exposure. Am J Public Health 78:696–698

    Article  PubMed  CAS  Google Scholar 

  17. Johansson S, Norman M, Legnevall L, Dalmaz Y, Lagercrantz H, Vanpee M (2007) Increased catecholamines and heart rate in children with low birth weight: perinatal contributions to sympathoadrenal overactivity. J Intern Med 261:480–487

    Article  PubMed  CAS  Google Scholar 

  18. Kahn A, Sawaguchi T, Sawaguchi A, Groswasser J, Franco P, Scaillet S, Kelmanson I, Dan B (2002) Sudden infant deaths: from epidemiology to physiology. Forensic Sci Int 130(Suppl):S8–S20

    Article  PubMed  Google Scholar 

  19. Kinney HC, O’Donnell TJ, Kriger P, White WF (1993) Early developmental changes in [3H]nicotine binding in the human brainstem. Neuroscience 55:1127–1138

    Article  PubMed  CAS  Google Scholar 

  20. Lain KY, Powers RW, Krohn MA, Ness RB, Crombleholme WR, Roberts JM (1999) Urinary cotinine concentration confirms the reduced risk of preeclampsia with tobacco exposure. Am J Obstet Gynecol 181:1192–1196

    Article  PubMed  CAS  Google Scholar 

  21. Lambers DS, Clark KE (1996) The maternal and fetal physiologic effects of nicotine. Semin Perinatol 20:115–126

    Article  PubMed  CAS  Google Scholar 

  22. Leach CE, Blair PS, Fleming PJ, Smith IJ, Platt MW, Berry PJ, Golding J (1999) Epidemiology of SIDS and explained sudden infant deaths. CESDI SUDI Research Group. Pediatrics 104:e43

    Article  PubMed  CAS  Google Scholar 

  23. Lindqvist R, Lendahls L, Tollbom O, Aberg H, Hakansson A (2002) Smoking during pregnancy: comparison of self-reports and cotinine levels in 496 women. Acta Obstet Gynecol Scand 81:240–244

    Article  PubMed  Google Scholar 

  24. Milerad J, Sundell H (1993) Nicotine exposure and the risk of SIDS. Acta Paediatr Suppl 82(Suppl 389):70–72

    Article  PubMed  Google Scholar 

  25. Neff RA, Simmens SJ, Evans C, Mendelowitz D (2004) Prenatal nicotine exposure alters central cardiorespiratory responses to hypoxia in rats: implications for sudden infant death syndrome. J Neurosci 24:9261–9268

    Article  PubMed  CAS  Google Scholar 

  26. Oncken CA, Henry KM, Campbell WA, Kuhn CM, Slotkin TA, Kranzler HR (2003) Effect of maternal smoking on fetal catecholamine concentrations at birth. Pediatr Res 53:119–124

    PubMed  CAS  Google Scholar 

  27. Patural H, Barthelemy JC, Pichot V, Mazzocchi C, Teyssier G, Damon G, Roche F (2004) Birth prematurity determines prolonged autonomic nervous system immaturity. Clin Auton Res 14:391–395

    Article  PubMed  CAS  Google Scholar 

  28. Peacock JL, Bland JM, Anderson HR, Brooke OG (1991) Cigarette smoking and birthweight: type of cigarette smoked and a possible threshold effect. Int J Epidemiol 20:405–412

    Article  PubMed  CAS  Google Scholar 

  29. Prechtl H, Beintema D (1964) The Neurological Examination of the Full-Term Newborn Infant. A manual for clinical use from the Department of Experimental Neurology, University of Groningen. Spastics Society Medical Education and Information Unit in association with William Heinemann Medical Books, London, p 72

    Google Scholar 

  30. Rosenstock EG, Cassuto Y, Zmora E (1999) Heart rate variability in the neonate and infant: analytical methods, physiological and clinical observations. Acta Paediatr 88:477–482

    Article  PubMed  CAS  Google Scholar 

  31. Schechtman VL, Raetz SL, Harper RK, Garfinkel A, Wilson AJ, Southall DP, Harper RM (1992) Dynamic analysis of cardiac R-R intervals in normal infants and in infants who subsequently succumbed to the sudden infant death syndrome. Pediatr Res 31:606–612

    Article  PubMed  CAS  Google Scholar 

  32. Schellscheidt J, Oyen N, Jorch G (1997) Interactions between maternal smoking and other prenatal risk factors for sudden infant death syndrome (SIDS). Acta Paediatr 86:857–863

    PubMed  CAS  Google Scholar 

  33. Slotkin TA, Saleh JL, McCook EC, Seidler FJ (1997) Impaired cardiac function during postnatal hypoxia in rats exposed to nicotine prenatally: implications for perinatal morbidity and mortality, and for sudden infant death syndrome. Teratology 55:177–184

    Article  PubMed  CAS  Google Scholar 

  34. Sovik S, Lossius K, Walloe L (2001) Heart rate response to transient chemoreceptor stimulation in term infants is modified by exposure to maternal smoking. Pediatr Res 49:558–565

    Article  PubMed  CAS  Google Scholar 

  35. Task Force of the European Society of Cardiology, the North American Society of Pacing, Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use European heart journal 17:354–381

    Google Scholar 

  36. Wisborg K, Kesmodel U, Henriksen TB, Olsen SF, Secher NJ (2000) A prospective study of smoking during pregnancy and SIDS. Arch Dis Child 83:203–206

    Article  PubMed  CAS  Google Scholar 

  37. Wong T, Wickstrom R, Holgert H (2003) Chronic prenatal nicotine exposure alters enkephalin mRNA regulation in the perinatal rat adrenal medulla. Pediatr Res 53:814–816

    Article  PubMed  CAS  Google Scholar 

  38. Yamamoto Y, Hughson RL (1991) Coarse-graining spectral analysis: new method for studying heart rate variability. J Appl Physiol 71:1143–1150

    PubMed  CAS  Google Scholar 

  39. Yamamoto Y, Hughson RL, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71:1136–1142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sylvie Cappelle for technical assistance.

Conflict of interest statement

No financial assistance was received in support of the study. Nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Thiriez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiriez, G., Bouhaddi, M., Mourot, L. et al. Heart rate variability in preterm infants and maternal smoking during pregnancy. Clin Auton Res 19, 149–156 (2009). https://doi.org/10.1007/s10286-009-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-009-0003-8

Keywords

Navigation