Skip to main content
Log in

Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We show that the Gromov-Witten theory of Calabi-Yau hypersurfaces matches, in genus zero and after an analytic continuation, the quantum singularity theory (FJRW theory) recently introduced by Fan, Jarvis and Ruan following a proposal of Witten. Moreover, on both sides, we highlight two remarkable integral local systems arising from the common formalism of \(\widehat {\Gamma }\)-integral structures applied to the derived category of the hypersurface {W=0} and to the category of graded matrix factorizations of W. In this setup, we prove that the analytic continuation matches Orlov equivalence between the two above categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

W(x 1,…,x N ):

weighted homogeneous polynomial (Section 1.1)

X W :

Calabi-Yau hypersurface defined by W in \(\mathbf {P}(\underline {w})\) (Section 1.1)

μ d :

the group of d-th roots of unity

H :

state space (\(H(W,\boldsymbol {\mu }_{d}) \text{\ or\ } H_{{\operatorname {CR}}}(X_{W})\), Sections 2.1.1, 2.2.1)

H′:

narrow/ambient part (Section 2.3.1)

H″:

broad/primitive part (Section 2.3.1)

{t i}:

linear co-ordinates on the state space associated to a basis {T i } (Sections 2.3, 2.4, 3.5.2)

\(\widehat {\Gamma }\) :

Gamma class (Section 2.4.4)

\(\overline {H}\) :

state space of twisted theories (\(H_{{\operatorname {ext}}}\text{\ or\ } H_{{\operatorname {CR}}}( \mathbf {P}(\underline {w}))\), Section 3.5.2)

\(\mathcal {M}\) :

global Kähler moduli space (P(1,d)∖{0,v c}, Section 5.1)

References

  1. D. Abramovich, T. Graber, and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Am. J. Math., 130 (2008), 1337–1398. arXiv:math/0603151.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Abramovich and A. Vistoli, Compactifying the space of stable maps, J. Am. Math. Soc., 15 (2002), 27–75 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. S. Aspinwall, D-branes on Calabi-Yau manifolds, in Progress in String Theory, pp. 1–152, World Scientific Publishing, Hackensack, 2005.

    Chapter  Google Scholar 

  4. V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., 3 (1994), 493–535.

    MATH  MathSciNet  Google Scholar 

  5. L. A. Borisov and R. Paul Horja, Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math., 207 (2006), 876–927.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. A. Borisov and R. Paul Horja, On the better-behaved version of the GKZ hypergeometric system. arXiv:1011.5720.

  7. R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, 1986. https://tspace.library.utoronto.ca/bitstream/1807/16682/1/maximal_cohen-macaulay_modules_1986.pdf.

  8. R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math., 88 (1987), 165–182.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Canonaco and R. L. Karp, Derived autoequivalences and a weighted Beilinson resolution, J. Geom. Phys., 58 (2008), 743–760.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Chen, Y. Ruan, Orbifold Gromov-Witten theory, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., vol. 310, pp. 25–85, Am. Math. Soc., Providence, 2002.

    Chapter  Google Scholar 

  11. A. Chiodo, Stable twisted curves and their r-spin structures (Courbes champêtres stables et leurs structures r-spin), Ann. Inst. Fourier (Grenoble), 58 (2008), 1635–1689. arXiv:math.AG/0603687.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Chiodo and J. Nagel, in preparation.

  13. A. Chiodo and Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., 182 (2010), 117–165.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Chiodo and Y. Ruan, LG/CY correspondence: the state space isomorphism, Adv. Math., 227 (2011), 2157–2188. arXiv:0908.0908.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Chiodo and Y. Ruan, A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence, Annales de l’Institut Fourier, to appear. http://www-fourier.ujf-grenoble.fr/~chiodo/framework.

  16. A. Chiodo and D. Zvonkine, Twisted r-spin potential and Givental’s quantization, Adv. Theor. Math. Phys., 13 (2009), 1335–1369. arXiv:0711.0339.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J., 147 (2009), 377–438. arXiv:math.AG/0702234.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, in preparation.

  19. T. Coates, A. Corti, Y.-P. Lee, and H.-H. Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math., 202 (2009), 139–193.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Coates, A. Gholampour, H. Iritani, Y. Jiang, P. Johnson, and C. Manolache, The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces, Math. Res. Lett. 19 (2012), 997–1005. arXiv:1202.2754.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Coates and A. Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. Math. (2), 165 (2007), 15–53.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Dyckerhoff, Compact generators in categories of matrix factorizations. Duke Math. J., 159 (2011), 223–274. arXiv:0904.3413.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., 260 (1980), 35–64.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math., 139 (2000), 173–199, doi:10.1007/s002229900028.

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Fan T. Jarvis, and Y. Ruan, The Witten equation and its virtual fundamental cycle. arXiv:0712.4025.

  26. H. Fan T. Jarvis, and Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math. 178 (2013), 1–106. arXiv:0712.4021v3.

    Article  MATH  MathSciNet  Google Scholar 

  27. I. M. Gelfand, A. V. Zelevinsky, and M. M. Kapranov, Hypergeometric functions and toral manifolds, Funkc. Anal. Prilozh., 23 (1989), 12–26 (Russian). Englih Transl: Funct. Anal. Appl. 23 (1989), 94–106.

    Article  MathSciNet  Google Scholar 

  28. A. Givental, A mirror theorem for toric complete intersections, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., vol. 160, pp. 141–175, Birkhäuser Boston, Boston, 1998.

    Chapter  Google Scholar 

  29. A. B. Givental, Symplectic geometry of Frobenius structures, in Frobenius Manifolds. Aspects Math., vol. E36, pp. 91–112, Vieweg, Wiesbaden, 2004.

    Chapter  Google Scholar 

  30. B. R. Greene, C. Vafa, and N. P. Warner, Calabi-Yau manifolds and renormalization group flows, Nucl. Phys. B, 324 (1989), 371–390.

    Article  MATH  MathSciNet  Google Scholar 

  31. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Classics Library, Wiley, New York, 1994. Reprint of the 1978 original.

    Book  Google Scholar 

  32. M. A. Guest, Quantum cohomology via D-modules, Topology, 44 (2005), 263–281.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. A. Guest and H. Sakai, Orbifold quantum D-modules associated to weighted projective spaces. arXiv:0810.4236.

  34. M. Herbst, K. Hori, and D. C. Page, Phases of \(\mathcal{N}=2\) theories in 1+1 dimensions with boundary. arXiv:0803.2045.

  35. C. Hertling, tt geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math., 555 (2003), 77–161.

    MATH  MathSciNet  Google Scholar 

  36. C. Hertling and Y. Manin, Unfoldings of meromorphic connections and a construction of Frobenius manifolds, in Frobenius Manifolds. Aspects Math., vol. E36, pp. 113–144, Vieweg, Wiesbaden, 2004.

    Chapter  Google Scholar 

  37. K. Hori and J. Walcher, F-term equations near Gepner points, J. High Energy Phys., 1 (2005), 008, 23 pp. (electronic).

    Article  MathSciNet  Google Scholar 

  38. R. Paul Horja, Hypergeometric functions and mirror symmetry in toric varieties. arXiv:math/9912109.

  39. S. Hosono, Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, in Mirror Symmetry. V, AMS/IP Stud. Adv. Math., vol. 38, pp. 405–439, Am. Math. Soc., Providence, 2006.

    Google Scholar 

  40. H. Iritani, Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math., 610 (2007), 29–69.

    MATH  MathSciNet  Google Scholar 

  41. H. Iritani, Quantum D-modules and generalized mirror transformations, Topology, 47 (2008), 225–276.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., 222 (2009), 1016–1079. arXiv:0903.1463.

    Article  MATH  MathSciNet  Google Scholar 

  43. H. Iritani, Quantum cohomology and periods, Annales de l’Institut Fourier, to appear. arXiv:1101.4512.

  44. L. Katzarkov, M. Kontsevich, and T. Pantev, Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, pp. 87–174, Am. Math. Soc., Providence, 2008.

    Chapter  Google Scholar 

  45. T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math., 16 (1979), 151–159.

    MATH  MathSciNet  Google Scholar 

  46. M. Kontsevich, in Homological Algebra of Mirror Symmetry (Zürich, 1994), vol. 2, pp. 120–139, Birkhäuser, Basel, 1995.

    Google Scholar 

  47. M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., 164 (1994), 525–562.

    Article  MATH  MathSciNet  Google Scholar 

  48. A. Libgober, Chern classes and the periods of mirrors, Math. Res. Lett., 6 (1999), 141–149.

    Article  MATH  MathSciNet  Google Scholar 

  49. Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, vol. 47, Am. Math. Soc., Providence, 1999.

    MATH  Google Scholar 

  50. E. Mann and T. Mignon, Quantum D-modules for toric nef complete intersections. arXiv:1112.1552.

  51. E. J. Martinec, Criticality, catastrophes, and compactifications, in Physics and Mathematics of Strings, pp. 389–433, World Scientific Publishing, Teaneck, 1990.

    Chapter  Google Scholar 

  52. D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 246 (2004), 240–262. Algebr. Geom. Metody, Svyazi i Prilozh (Russian, with Russian summary). English Transl.: Proc. Steklov Inst. Math. 3, 227–248 (2004).

    Google Scholar 

  53. D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, pp. 503–531, Birkhäuser Boston, Boston, 2009.

    Chapter  Google Scholar 

  54. R. Pandharipande, Rational curves on hypersurfaces (after A. Givental), Astérisque, 252 (1998), 307–340. Séminaire Bourbaki. Vol. 1997/98.

    MathSciNet  Google Scholar 

  55. F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque, 130 (1985), 11–47 (French). Differential systems and singularities (Luminy, 1983).

    MathSciNet  Google Scholar 

  56. A. Polishchuk and A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations. Duke Math. J., 161 (2012), 1863–1926. arXiv:1002.2116.

    Article  MATH  MathSciNet  Google Scholar 

  57. A. Polishchuk and A. Vaintrob, Matrix Factorizations and Cohomological Field Theory. arXiv:1105.2903.

  58. A. Pressley and G. Segal, Loop Groups, Oxford Mathematical Monographs, Clarendon Press/Oxford University Press, New York, 1986. Oxford Science Publications.

    MATH  Google Scholar 

  59. T. Reichelt, A construction of Frobenius manifolds with logarithmic poles and applications, Commun. Math. Phys., 287 (2009), 1145–1187.

    Article  MATH  MathSciNet  Google Scholar 

  60. M. A. Rose, A reconstruction theorem for genus zero Gromov-Witten invariants of stacks, Am. J. Math., 130 (2008), 1427–1443.

    Article  MATH  Google Scholar 

  61. K. Saito, The higher residue pairings \(K_{F}^{(k)}\) for a family of hypersurface singular points, in Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, pp. 441–463, Am. Math. Soc., Providence, 1983.

    Chapter  Google Scholar 

  62. E. Segal, Equivalence between GIT quotients of Landau-Ginzburg B-models, Commun. Math. Phys., 304 (2011), 411–432.

    Article  MATH  Google Scholar 

  63. P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108 (2001), 37–108.

    Article  MATH  MathSciNet  Google Scholar 

  64. J. Steenbrink, Intersection form for quasi-homogeneous singularities, Compos. Math., 34 (1977), 211–223.

    MATH  MathSciNet  Google Scholar 

  65. B. Toën, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, K-Theory, 18 (1999), 33–76.

    Article  MATH  MathSciNet  Google Scholar 

  66. H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., 14 (2010), 1–81.

    Article  MathSciNet  Google Scholar 

  67. C. Vafa and N. P. Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B, 218 (1989), 51–58.

    Article  MathSciNet  Google Scholar 

  68. J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys., 46 (2005), 082305, 29.

    Article  MathSciNet  Google Scholar 

  69. E. Witten, Phases of N=2 theories in two dimensions, Nucl. Phys. B, 403 (1993), 159–222.

    Article  MATH  MathSciNet  Google Scholar 

  70. E. Witten, Algebraic Geometry Associated with Matrix Models of Two-Dimensional Gravity, Topological Models in Modern Mathematics, Publish or Perish, Stony Brook, New York, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Iritani.

About this article

Cite this article

Chiodo, A., Iritani, H. & Ruan, Y. Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publ.math.IHES 119, 127–216 (2014). https://doi.org/10.1007/s10240-013-0056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-013-0056-z

Keywords

Navigation