Skip to main content

Advertisement

Log in

Mathematics of the Neural Response

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose a natural image representation, the neural response, motivated by the neuroscience of the visual cortex. The inner product defined by the neural response leads to a similarity measure between functions which we call the derived kernel. Based on a hierarchical architecture, we give a recursive definition of the neural response and associated derived kernel. The derived kernel can be used in a variety of application domains such as classification of images, strings of text and genomics data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68, 337–404 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Caponnetto, T. Poggio, S. Smale, On a model of visual cortex: learning invariance and selectivity from image sequences. CBCL paper 272 / CSAIL technical report 2008-030, MIT, Cambridge, MA (2008).

  3. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991).

    Book  MATH  Google Scholar 

  4. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  5. F. Cucker, D.X. Zhou, Learning Theory: An Approximation Theory Viewpoint. Cambridge Monographs on Applied and Computational Mathematics (Cambridge University Press, Cambridge, 2007).

    MATH  Google Scholar 

  6. D.A. Forsyth, J. Ponce, Computer Vision: A Modern Approach (Prentice Hall, New York, 2002).

    Google Scholar 

  7. K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biol. Cybern. 36, 193–202 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11), 2278–2324 (1998).

    Article  Google Scholar 

  9. T. Poggio, S. Smale, The mathematics of learning: Dealing with data, Not. Am. Math. Soc. (AMS), 50(5) (2003).

  10. M. Riesenhuber, T. Poggio, Hierarchical models of object recognition in cortex, Nat. Neurosci. 2, 1019–1025 (1999).

    Article  Google Scholar 

  11. B. Schölkopf, A.J. Smola, Learning with Kernels (MIT Press, Cambridge, 2002).

    Google Scholar 

  12. T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. AI Memo 2005-036 / CBCL Memo 259, MIT, Cambridge, MA (2005).

  13. T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A quantitative theory of immediate visual recognition, Prog. Brain Res. 165, 33–56 (2007).

    Article  Google Scholar 

  14. T. Serre, A. Oliva, T. Poggio, A feedforward architecture accounts for rapid categorization, Proc. Natl. Acad. Sci. 104, 6424–6429 (2007).

    Article  Google Scholar 

  15. T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Robust object recognition with cortex-like mechanisms, IEEE Trans. Pattern Anal. Mach. Intell. 29, 411–426 (2007).

    Article  Google Scholar 

  16. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  17. S. Smale, T. Poggio, A. Caponnetto, J. Bouvrie, Derived distance: towards a mathematical theory of visual cortex. CBCL paper, MIT, Cambridge, MA (November 2007).

  18. S. Ullman, M. Vidal-Naquet, E. Sali, Visual features of intermediate complexity and their use in classification, Nat. Neurosci. 5(7), 682–687 (2002).

    Google Scholar 

  19. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998).

    MATH  Google Scholar 

  20. H. Wersing, E. Koerner, Learning optimized features for hierarchical models of invariant recognition, Neural Comput. 15(7), 1559–1588 (2003).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bouvrie.

Additional information

Communicated by Felipe Cucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smale, S., Rosasco, L., Bouvrie, J. et al. Mathematics of the Neural Response. Found Comput Math 10, 67–91 (2010). https://doi.org/10.1007/s10208-009-9049-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-009-9049-1

Keywords

Mathematics Subject Classification (2000)

Navigation