Skip to main content

Advertisement

Log in

Adaptation of Vestibular Tone Studied with Electrical Stimulation of Semicircular Canal Afferents

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Damage to one vestibular labyrinth or nerve causes a central tone imbalance, reflected by prominent spontaneous nystagmus. Central adaptive mechanisms eliminate the nystagmus over several days, and the mechanisms underlying this process have received extensive study. The characteristics of vestibular compensation when the tone imbalance is presented gradually or repeatedly have never been studied. We used high-frequency electrical stimulation of semicircular canal afferents to generate a vestibular tone imbalance and recorded the nystagmus produced when the stimulation was started abruptly or gradually and when it was repeatedly cycled on and off. In the acute-onset protocol, brisk nystagmus occurred when stimulation started, gradually resolved within 1 day, and reversed direction when the stimulation was stopped after 1 week. Repeated stimulation cycles resulted in progressively smaller nystagmus responses. In the slow-onset protocol, minimal nystagmus occurred while the stimulation ramped-up to its maximum rate over 12 h, but a reversal still occurred when the stimulation was stopped after 1 week, and repeated stimulation cycles did not affect this pattern. The absence of nystagmus during the 12 h ramp of stimulation demonstrates that central vestibular tone can rebalance relatively quickly, and the reduction in the stimulation-off nystagmus with repeated cycles of the acute-onset but not the slow-onset stimulation suggests that dual-state adaptation may have occurred with the former paradigm but not the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  • Balter SG, Stokroos RJ, Eterman RM, Paredis SA, Orbons J, Kingma H (2004) Habituation to galvanic vestibular stimulation. Acta Otolaryngol 124:941–945

    Article  PubMed  Google Scholar 

  • Beraneck M, Idoux E (2012) Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis. Front Neurol 3:1–13

    Article  Google Scholar 

  • Beraneck M, McKee JL, Aleisa M, Cullen KE (2008) Asymmetric recovery in cerebellar-deficient mice following unilateral labyrinthectomy. J Neurophysiol 100:945–958

    Article  PubMed  CAS  Google Scholar 

  • Berquest F, Ludwig M, Dutia MB (2008) Role of the commissural inhibitory system in vestibular compensation in the rat. J Physiol 586:4441–4452

    Article  Google Scholar 

  • Cohen H, Cohen B, Raphan T, Waespe W (1992) Habituation and adaptation of the vestibuloocular reflex: a model of differential control by the vestibulocerebellum. Exp Brain Res 90:526–538

    Article  PubMed  CAS  Google Scholar 

  • Courjon JH, Precht W, Sirkin DW (1987) Vestibular nerve and nuclei unit responses and eye movement responses to repetitive galvanic stimulation of the labyrinth in the rat. Exp Brain Res 66:41–48

    Article  PubMed  CAS  Google Scholar 

  • Curthoys IS (1975) The orientation of the semicircular canals in guinea pigs. Acta Otolaryngol 80:197–205

    Article  PubMed  CAS  Google Scholar 

  • Curthoys IS (2000) Vestibular compensation and substitution. Curr Opin Neurol 13:27–30

    Article  PubMed  CAS  Google Scholar 

  • Darlington CL, Smith PF (2000) Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Prog Neurobiol 62:313–325

    Article  PubMed  CAS  Google Scholar 

  • Day AS, Wang CT, Chen CN, Young YH (2008) Correlating the cochlearvestibular deficits with tumor size of acoustic neuroma. Acta Otolaryngol 128:756–760

    Article  PubMed  Google Scholar 

  • Dieringer N (1995) ‘Vestibular compensation’: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46:97–129

    PubMed  CAS  Google Scholar 

  • Escudero M, de Waele C, Vibert N, Berthoz A, Vidal PP (1993) Saccadic eye movements and the horizontal vestibulo-ocular and vestibule-collic reflexes in the intact guinea pig. Exp Brain Res 97:254–262

    Article  PubMed  CAS  Google Scholar 

  • Fetter M, Zee DS (1988) Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 59:370–393

    PubMed  CAS  Google Scholar 

  • Gittis AH, du Lac S (2006) Intrinsic and synaptic plasticity in the vestibular system. Curr Opin Neurobiol 16:385–390

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties. J Neurophysiol 34:676–684

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256

    PubMed  CAS  Google Scholar 

  • Gong W, Merfeld DM (2000) Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Ann Biomed Eng 28:572–581

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Merfeld DM (2002) System design and performance of a unilateral horizontal semicircular prosthesis. IEEE Trans Biomed Eng 49:175–181

    Article  PubMed  Google Scholar 

  • Hain TC, Fetter M, Zee DS (1987) Head-shaking nystagmus in patients with unilateral peripheral vestibular lesions. Am J Otolaryngol 8:36–47

    Article  PubMed  CAS  Google Scholar 

  • Halmagyi GM, Weber KP, Curthoys IS (2010) Vestibular function after acute vestibular neuritis. Restor Neurol Neurosci 28:37–46

    PubMed  CAS  Google Scholar 

  • Johnston AR, Seckl JR, Dutia MB (2002) Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. J Physiol 545:903–911

    Article  PubMed  CAS  Google Scholar 

  • Kandel E, Kupferman I, Iverson S (2000) Learning and memory. In: Kandel E, Schwartz J, Jessel T (eds) Principals of neural science. McGraw-Hill, New York, pp 1227–1246

    Google Scholar 

  • Lewis RF, Tamargo RJ (2001) Cerebellar lesions impair context-dependent adaptation of reaching movements in primates. Exp Brain Res 138:263–267

    Article  PubMed  CAS  Google Scholar 

  • Lewis RF, Haburcakova C, Gong W, Makary C, Merfeld DM (2010) Vestibuloocular reflex adaptation investigated with chronic motion-modulated electrical stimulation of semicircular canal afferents. J Neurophysiol 103:1066–1079

    Article  PubMed  Google Scholar 

  • Lim R, Callister RJ, Brichta AM (2010) An increase glycinergic quantal amplitude and frequency during early vestibular compensation in the mouse. J Neurophysiol 103:16–24

    Article  PubMed  CAS  Google Scholar 

  • Merfeld DM, Gong W, Morrissey J, Saginaw M, Haburcakova C, Lewis RF (2006) Acclimation to chronic constant-rate peripheral stimulation provided by a vestibular prosthesis. IEEE Trans Biomed Eng 53:2362–2372

    Article  PubMed  Google Scholar 

  • Norris SA, Hathaway EN, Taylor JA, Thach WT (2011) Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations. J Neurophysiol 105:2248–2259

    Article  PubMed  Google Scholar 

  • Pettorossi VE, Dieni CV, Scarduzio M, Grassi S (2011) Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei. Neuroscience 187:1–14

    Article  PubMed  CAS  Google Scholar 

  • Quinn KJ (1998) Classical conditioning using using vestibular reflexes. J Vestib Res 8:117–132

    Article  PubMed  CAS  Google Scholar 

  • Ris L, Godaux E (1998a) Spike discharge regularity of vestibular neurons in labyrinthectomized guinea pigs. Neurosci Lett 253:131–134

    Article  PubMed  CAS  Google Scholar 

  • Ris L, Godaux E (1998b) Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 80:2352–2367

    PubMed  CAS  Google Scholar 

  • Shelhamer M, Robinson DA, Tan HS (1992) Contex-specific adaptation of the gain of the vestibulo-ocular reflex in humans. J Vestib Res 2:89–96

    PubMed  CAS  Google Scholar 

  • Thach WT (1996) Context-response linkage. Int Rev Neurobiol 41:599–611

    Article  Google Scholar 

  • Tykocinski M, Shepard RK, Clark G (1995) Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. Hear Res 88:124–142

    Article  PubMed  CAS  Google Scholar 

  • Vidal P-P, de Waele C, Vibert N, Muhlethaler M (1998) Vestibular compensation revisited. Otolaryngol Head Neck Surg 119:34–42

    Article  PubMed  CAS  Google Scholar 

  • Welch R (1978) Perceptual modification: adapting to altered sensory environments. Academic, New York

    Google Scholar 

Download references

Acknowledgments

We thank S. Fukuda, M. Saginaw, and J-P Guyot. This work was supported by the Geneva Charity Foundation “Valeria Rossi di Montelera” and the Swiss Foundation for Fellowships in Medicine and Biology (PASMP3-123225) in collaboration with the Swiss National Science Foundation (K. Nicoucar); by the National Institute of Deafness and Other Communication Disorders Grants DC-6909 and DC-8362 to R.F. Lewis and DC-8167 to D.M. Merfeld; and by the European Commission contract 225929 to D.M. Merfeld.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, R.F., Nicoucar, K., Gong, W. et al. Adaptation of Vestibular Tone Studied with Electrical Stimulation of Semicircular Canal Afferents. JARO 14, 331–340 (2013). https://doi.org/10.1007/s10162-013-0376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0376-1

Keywords

Navigation