Skip to main content
Log in

Inactivation of an invertebrate acetylcholinesterase by sulfhydryl reagents: the roles of two cysteines in the catalytic gorge of the enzyme

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

We have used site-directed mutagenesis and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase (AChE), ChE2 from amphioxus, by the sulfhydryl reagents 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM), creating various mutants, including C310A and C466A, and the double mutants C310A/C466A and C310A/F312I, to assess the relative roles of the two cysteines and a proposal that the increased rate of inactivation in the F312I mutant is due to increased access to Cys310. Our results suggest that both cysteines may be involved in inactivation by sulfhydryl reagents, but that the cysteine in the vicinity of the acyl pocket is more accessible. We speculate that the inactivation of aphid AChEs by sulfhydryl reagents is due to the presence of a cysteine homologous to Cys310. We also investigated the effects of various reversible cholinergic ligands, which bind to different subsites of the active site of the enzyme, on the rate of inactivation by DTNB of wild type ChE2 and ChE2 F312I. For the most part the inhibitors protect the enzymes from inactivation by DTNB. However, a notable exception is the peripheral site ligand propidium, which accelerates inactivation in the wild type ChE2, but retards inactivation in the F312I mutant. We propose that these opposing effects are the result of an altered allosteric signal transduction mechanism in the F312I mutant compared to the wild type ChE2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Matthew Wolfe, Melissa Rowland, and Leo Pezzementi, unpublished observations.

References

  • Ariel N, Ordentlich A, Barak D, Bino T, Velan B, Shafferman A (1998) The ‘aromatic patch’ of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem J 335:95–102

    PubMed  CAS  Google Scholar 

  • Bourne Y, Taylor P, Bougis PE, Marchot P (1999) Crystal structure of mouse acetylcholinesterase. J Biol Chem 274:2963–2970

    Article  PubMed  CAS  Google Scholar 

  • Brestkin AP, Maizel EB, Moralev SN, Novozhilov KV, Sazonova IN (1985) Isolation, partial purification and some properties of cholinesterases from spring grain aphid Schizaphis gramina (Rond.). Insect Biochem 15:309–314

    Article  CAS  Google Scholar 

  • Changeux J-P (1966) Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol Pharmacol 2:369–392

    PubMed  CAS  Google Scholar 

  • Doctor BP, Toker L, Roth E, Silman I (1987) Microtiter assay for acetylcholinesterase. Anal Biochem 166:399–403

    Article  PubMed  CAS  Google Scholar 

  • Dolginova EA, Roth E, Silman I, Weiner LM (1992) Chemical modification of Torpedo acetylcholinesterase by disulfides: appearance of a "molten globule" state. Biochemistry 31:12248–12254

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney DK, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Gibney G, Taylor P (1990) Biosynthesis of Torpedo acetylcholinesterase in mammalian cells: functional expression and mutagenesis of the glycophospholipid-anchored form. J Biol Chem 265:12576–12583

    PubMed  CAS  Google Scholar 

  • Gao JR, Kambhampati S, Zhu KY (2002) Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a dupliate gene lineage. Insect Biochem Mol Biol 32:765–775

    Article  PubMed  CAS  Google Scholar 

  • Harel M, Sussman JL, Krejci E, Bon S, Chanal P, Massoulié J, Silman I (1992) Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci USA 89:10827–10831

    Article  PubMed  CAS  Google Scholar 

  • Harel M, Kryger G, Rosenberry TL, Mallender WD, Lewis T, Fletcher RJ, Guss JM, Silman I, Sussman JL (2000) Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci 9:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan D, Shafferman A (2001) Does “butyrylization” of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Biochemistry 40:7433–7445

    Article  PubMed  CAS  Google Scholar 

  • Kryger G, Harel M, Giles K, Toker L, Velan G, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL (2000) Structures of recombinant native and E303Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr D Biol Crystallogr 56:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • Li F, Han ZJ (2002) Two different genes encoding acetylcholinesterase existing in cotton aphid (Aphis gossypii). Genome 45:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Manulis S, Ishaaya I, Perry AS (1981) Acetylcholinesterase of Aphis citricola: properties and significance in determining toxicity of systemic organophosphorus and carbamate compounds. Pest Biochem Physio 15:267–274

    Article  CAS  Google Scholar 

  • Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette F-M (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  PubMed  Google Scholar 

  • McClellan JS, Coblentz WB, Sapp M, Rulewicz G, Gaines DI, Hawkins A, Ozment C, Bearden A, Merritt S, Cunningham J, Palmer E, Contractor A, Pezzementi L (1998) cDNA cloning, in vitro expression, and biochemical characterization of cholinesterase 1 and cholinesterase 2 from amphioxus: comparison with cholinesterase 1 and cholinesterase 2 produced in vivo. Eur J Biochem 258:419–429

    Article  PubMed  CAS  Google Scholar 

  • Moralev SN, Rozengart E (2006) Comparative enzymology of cholinesterases. Intern Univ Line, La Jolla (in press)

  • Morel N, Bon S, Greenblatt M, van Belle D, Wodak SJ, Sussman JL, Massoulié J, Silman I (1999) Effect of mutations within the peripheral anionic site on the stability of acetylcholinesterase. Molec Pharmacol 55:982–992

    CAS  Google Scholar 

  • Nabeshima T, Toshinori K, Takashi T, Kono Y (2003) An amino acid substitution on the second acetylcholinesterase in the primicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem Biophys Res Commun 307:15–22

    Article  PubMed  CAS  Google Scholar 

  • Novoshilov KV, Brestkin AP, Khovanskikh AE, Maizel EB, Moralev SN, Nikanorova EV, Sazonova IN (1989) Cholinesterases of aphids - III. Sensitivity of acetylcholinesterases to several inhibitors as a possible phylogenetic character. Insect Biochem 19:15–18

    Article  Google Scholar 

  • Pezzementi L, Sutherland D, Sanders M, Soong W, Milner D, McClellan JS, Sapp M, Coblentz WB, Rulewicz G, Merritt S (1998) Structure and function of cholinesterases from agnathans and cephalochordates: implications for the evolution of cholinesterases. In: Doctor BP, Taylor P, Quinn DM, Rotundo RL, Gentry MK (eds) Structure and function of cholinesterases and related proteins. Plenum, London, pp 105–110

    Google Scholar 

  • Pezzementi L, Johnson K, Tsigelny I, Cotney J, Manning E, Barker A, Merritt S (2003) Amino acids defining the acyl pocket of an invertebrate cholinesterase. Comp Biochem Physiol B 136:813–832

    Article  PubMed  CAS  Google Scholar 

  • Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y, Ariel N, Cohen S, Velan B, Shafferman A (1993) Dissection of the human acetylcholinesterase active center: identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem 268:17083–17095

    PubMed  CAS  Google Scholar 

  • Ordentlich A, Barak D, Kronman C, Ariel N, Segal Y, Velan B, Shafferman A (1995) Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase. J Biol Chem 270:2082–2091

    Article  PubMed  CAS  Google Scholar 

  • Radić Z, Pickering NA, Vellom DC, Camp S, Taylor P (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 32:12074–12084

    Article  PubMed  Google Scholar 

  • Satoh G, Wang Y, Zhang P, Satoh N (2001) Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J Exptl Zool 291:354–364

    Article  CAS  Google Scholar 

  • Shapira M, Thompson CK, Soreq H, Robinson GE (2001) Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. J Mol Neurosci 17:1–12

    Article  PubMed  CAS  Google Scholar 

  • Smissart HR (1976) Reactivity of a critical sufhydryl group of the acetylcholinesterase from aphids (Myzus persicae). Pest Biochem Physiol 6:215–222

    Article  Google Scholar 

  • Steinberg N, Roth E, Silman I (1990) Torpedo acetylcholinesterase is inactivated by thiol reagents. Biochem Int 21:1043–1050

    PubMed  CAS  Google Scholar 

  • Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–878

    Article  PubMed  CAS  Google Scholar 

  • Sutherland D, McClellan JS, Milner D, Soong W, Axon N, Sanders M, Hester A, Kao YH, Poczatek T, Routt S, Pezzementi L (1997) Two cholinesterase activities and genes are present in amphioxus. J Exp Zool 277:213–229

    Article  PubMed  CAS  Google Scholar 

  • Taylor P, Radić Z (1994) The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 34:281–320

    Article  PubMed  CAS  Google Scholar 

  • Vellom DC, Radić Z, Li Y, Pickering NA, Camp S, Taylor P (1993) Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32:12–17

    Article  PubMed  CAS  Google Scholar 

  • Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M (2002) A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is nonhomologous to the ace gene in Drosophila. Proc R Soc Lond B Biol Sci 269:2007–2116

    Article  CAS  Google Scholar 

  • Wilson EJ, Massoulié J, Bon S, Rosenberry TL (1996) The rate of thermal inactivation of Torpedo acetylcholinesterase is not reduced in the C231S mutant. FEBS Lett 379:161–164

    Article  PubMed  CAS  Google Scholar 

  • Zahavi M, Tahori AS, Klimer F (1972) An acetylcholinesterase sensitive to sulfhydryl inhibitors. Biochim Biophys Acta 276:577–583

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Academic Research Award No. 1 R15 GM072510-01 from the National Institutes of Health to L.P. Additional support was provided by Birmingham-Southern College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Pezzementi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezzementi, L., Rowland, M., Wolfe, M. et al. Inactivation of an invertebrate acetylcholinesterase by sulfhydryl reagents: the roles of two cysteines in the catalytic gorge of the enzyme. Invert Neurosci 6, 47–55 (2006). https://doi.org/10.1007/s10158-006-0017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-006-0017-z

Keywords

Navigation