Skip to main content

Advertisement

Log in

Serum cystatin C measured by a sol particle homogeneous immunoassay can accurately detect early impairment of renal function

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

A sol particle homogeneous immunoassay (SPIA) is a method to measure the serum cystatin C (cysC) level as a marker of the glomerular filtration rate (GFR). Recently, formulas to convert measured cysC to GFR have been developed.

Methods

A total of 154 patients (46 ± 18 years old) who had undergone renal biopsy, sodium thiosulfate clearance (C thio) and 24-h creatinine clearance (24-hCcr) tests were subjects for the study. Their serum cysC levels were determined by SPIA.

Results

Multiple regression analysis revealed C thio and age as independent variables for serum creatinine concentration (Cr), while only C thio affected cysC. The equations using Cr or cysC showed significant correlation with C thio. Receiver-operating curve ROC analysis revealed that cysC and 24-hCcr shared comparable power to detect patients with GFR < 90 or 60 ml/min/1.73 m2 (AUC = 0.862 and 0.943 vs. AUC = 0.842 and 0.943, respectively), while Cr (AUC = 0.881) and MDRD2 (AUC = 0.888) showed slightly inferior ability to detect 60 ml/min/1.73 m2 than other parameters in the female population. The cut-off point of cysC and Cr obtained from the ROC analysis demonstrated strong power to detect patients with C thio < 90 ml/min/1.73 m2 or C thio < 60 ml/min/1.73 m2. According to CKD stages, the mean values of each equation were significantly different, like that demonstrated by 24-hCcr.

Conclusion

SPIA could determine cysC levels that detected early renal impairment. The accuracy of cysC to detect early renal impairment may be superior to that of Cr in females, while it would be comparable to that of CG or MDRD when they are corrected by sex and age. Both cysC itself and cysC equations are effective to monitor the progress of renal impairment. The future standardization of cysC measurements and development of novel equation of cysC would contribute to the further improvement of GFR estimation in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Int Suppl. 1997;63:S151-4.

    CAS  PubMed  Google Scholar 

  2. Rahn KH, Heidenreich S, Bruckner D. How to assess glomerular function and damage in humans. J Hypertens. 1999;17:309–17.

    Article  CAS  Google Scholar 

  3. Sugita O, Tomiyama Y, Matsuto T, Okada M, Gejyo F, Arakawa M, et al. A new enzymatic method for the determination of inulin. Ann Clin Biochem. 1995;32:561–5.

    Article  CAS  Google Scholar 

  4. Nakano M, Ueno M, Hasegawa H, Watanabe T, Kuroda T, Ito S, et al. Renal hemodynamic characteristics in patients with lupus nephritis. Ann Rheum Dis. 1998;57:226–30.

    Article  CAS  Google Scholar 

  5. Doolan PD, Alpen EL, Theil GB. A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med. 1962;32:65.

    Article  CAS  Google Scholar 

  6. Coll E, Botev A, Alvarez L, Poch E, Quinto L, Saurina A, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis. 2000;36:29–34.

    Article  CAS  Google Scholar 

  7. Shmesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28:830–8.

    Article  Google Scholar 

  8. Coresh J, Astor BC, MvQuillan G, Kusek J, Greene T, Van Lente F, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis. 2002;39:920–9.

    Article  CAS  Google Scholar 

  9. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kused JW, et al. The effects of dietary protein restriction and blood-pressure control on the progression of renal disease. Modification of diet in renal disease study group. N Engl J Med. 1994;220:877–84.

    Article  Google Scholar 

  10. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461–70.

    Article  CAS  Google Scholar 

  11. Imai E, Horio M, Nitta K, Yamagata K, Iseki KHara S, et al. Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin Exp Nephrol. 2007;11:41–50.

    Article  Google Scholar 

  12. Imai E, Horio M. Prevalence and perspectives of CKD in Japan (in Japanese). Nippon Jinzo Gakkai Shi. 2006;48:703–10.

    PubMed  Google Scholar 

  13. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006;69:399–405.

    Article  CAS  Google Scholar 

  14. Simonson O, Grubb A, Thysell H. The blood serum concentration of cystatin C (γ-trace) as a measure of the glomerular filtration rate. Scand J Clin Invest. 1985;45:97–101.

    Article  Google Scholar 

  15. Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jensson O, et al. Structure and expression of the human cystatin C gene. Biochem J. 1990;268:287–94.

    Article  CAS  Google Scholar 

  16. Kazama JJ, Kutsuwada K, Ataka K, Maruyama H, Gejyo F. Serum cystatin C reliably detects renal dysfunction in patients with various renal diseases. Nephron. 2002;91:13–20.

    Article  CAS  Google Scholar 

  17. Le Bricon T, Thervet E, Froissart M, Benlakehal M, Bousquet B, Legendre C, et al. Plasma cystatin C is superior to 24-h creatinine clearance and plasma creatinine for estimation of glomerular filtration rate 3 months after kidney transplantation. Clin Chem. 2000;46:1206–7.

    CAS  PubMed  Google Scholar 

  18. Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant. 2003;18:2024–31.

    Article  CAS  Google Scholar 

  19. Grubb A, Björk J, Lindström V, Sterner G, Bondesson P, Nyman U. A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using Cockcroft–Gault formula. Scand J Clin Lab Invest. 2005;65:153–62.

    Article  CAS  Google Scholar 

  20. Tanaka M, Matsuo K, Enomono M, Mizuno K. A sol particle homogeneous immunoassay for measuring serum cystatin C. Clin Chem. 2004;37:27–35.

    CAS  Google Scholar 

  21. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  CAS  Google Scholar 

  22. Ichihara K, Saitoh K, Itoh Y. Sources of variation and reference intervals for serum cystatin C in a healthy Japanese adult population. Clin Chem Lab Med. 2007;45:1232–6.

    Article  CAS  Google Scholar 

  23. Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindström V, et al. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem. 1994;40:1921–6.

    CAS  PubMed  Google Scholar 

  24. Mussap M, Ruzzante N, Varagnolo M, Plebani M. Quantitative automated particle-enhanced immunonephelometric assay for the routine measurement of human cystatin C. Clin Chem Lab Med. 1998;36:850–65.

    Article  Google Scholar 

  25. Erlandsen EJ, Randers E, Kristensen JH. Reference intervals for serum cystatin C and serum creatinine in adults. Clin Chem Lab Med. 1998;36:393–7.

    Article  CAS  Google Scholar 

  26. Imai E, Horio M. New kidney function tests (in Japanese). Nippon Naika Gakkai Zasshi. 2007;96:881–6.

    Article  CAS  Google Scholar 

  27. Zuo L, Ma YC, Xhou YH, Wang M, Xu GB, Wang HY. Application of GFR-estimating equations in Chinese patients with chronic kidney disease. Am J Kidney Dis. 2005;45:463–72.

    Article  Google Scholar 

  28. Laterza OF, Price CP, Scorr MG. Cystatin C. An improved estimator of glomerular filtration rate? Clin Chem. 2002;48:699–707.

    CAS  PubMed  Google Scholar 

  29. Nagase S, Koyama A. Sodium thiosulfate clearance (in Japanese). Nippon Rinsho. 1995;53(Su Pt 1):1078–81.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro J. Kazama.

About this article

Cite this article

Sato, H., Kazama, J.J., Kuroda, T. et al. Serum cystatin C measured by a sol particle homogeneous immunoassay can accurately detect early impairment of renal function. Clin Exp Nephrol 12, 270–276 (2008). https://doi.org/10.1007/s10157-008-0047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-008-0047-4

Keywords

Navigation