Skip to main content
Log in

A frequency distribution approach to hotspot identification

  • Original Article
  • Published:
Population Ecology

Abstract

We present a new global method for the identification of hotspots in conservation and ecology. The method is based on the identification of spatial structure properties through cumulative relative frequency distributions curves, and is tested with two case studies, the identification of fish density hotspots and terrestrial vertebrate species diversity hotspots. Results from the frequency distribution method are compared with those from standard techniques among local, partially local and global methods. Our approach offers the main advantage to be independent from the selection of any threshold, neighborhood, or other parameter that affect most of the currently available methods for hotspot analysis. The two case studies show how such elements of arbitrariness of the traditional methods influence both size and location of the identified hotspots, and how this new global method can be used for a more objective selection of hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abella A, Serena F, Ria M (2005) Distributional response to variations in abundance over spatial and temporal scales for juveniles of European hake (Merluccius merluccius) in the Western Mediterranean Sea. Fish Res 71:295–310

    Article  Google Scholar 

  • Aldstadt J, Getis A (2006) Using AMOEBA to create a spatial weights matrix and identify spatial clusters. Geogr Anal 38:327–343

    Article  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association––LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Anselin L, Syabri I, Kho Y (2005) GeoDa: and introduction to spatial data analysis. Geogr Anal 38:5–22

    Article  Google Scholar 

  • Ardizzone GD, Corsi F (1997) Atlas of Italian demersal fishery resources. Biol Mar Medit 4:1–479

    Google Scholar 

  • Atkinson PJ, Unwin DJ (2002) Density and local attribute estimation of an infectious disease using MapInfo. Comput Geosci 28:1095–1105

    Article  Google Scholar 

  • Bartolino V, Ottavi A, Colloca F, Ardizzone GD, Stefánsson G (2008) Bathymetric preferences of juvenile European hake (Merluccius merluccius). ICES J Mar Sci 65:963–969

    Article  Google Scholar 

  • Bonn A, Rodrigues ASL, Gaston KJ (2002) Threatened and endemic species: are they good indicators of patterns of biodiversity on a national scale? Ecol Lett 5:733–741

    Article  Google Scholar 

  • Colloca F, Carpentieri P, Balestri E, Ardizzone GD (2004) A critical habitat for Mediterranean fish resources: shelf break areas with Leptometra phalangium (Echinodermata, Crinoidea). Mar Biol 145:1129–1142

    Article  Google Scholar 

  • Colloca F, Bartolino V, Jona Lasinio G, Maiorano L, Sartor P, Ardizzone G (2009) Identifying fish nurseries using density and persistence measures. Mar Ecol Prog Ser 381:287–296

    Article  Google Scholar 

  • Falcucci A, Maiorano L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecol 22:617–631

    Article  Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Garcia A (2006) Using ecological niche modeling to identify diversity hotspots for the herpetofauna of Pacific lowlands and adjacent interior valleys of Mexico. Biol Conserv 130:25–46

    Article  Google Scholar 

  • Gjerde I, Rolstad J, Blom HH, Storaunet KO (2004) Fine-scale diversity and rarity hotspots in northern forests. Conserv Biol 18:1032–1042

    Article  Google Scholar 

  • Grand J, Buonaccorsi J, Cushman SA, Griffin CR, Neel MC (2004) A multiscale landscape approach to predicting bird and moth rarity hotspots in a threatened pitch pine-scrub oak community. Conserv Biol 18:1063–1077

    Article  Google Scholar 

  • Griffith DA (2010) The Moran coefficient for non-normal data. J Stat Plan Infer. doi:10.1016/j.jspi.2010.03.045

  • Haining R (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Horne JS, Garton EO (2006) Likelihood cross-validation versus least squares cross-validation for choosing the smoothing parameter in kernel home-range analysis. J Wildl Manage 70:641–648

    Article  Google Scholar 

  • Houghton JDR, Doyle TK, Wilson MW, Davenport J, Hays GC (2006) Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87:1967–1972

    Article  PubMed  Google Scholar 

  • Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488

    Article  PubMed  Google Scholar 

  • Kissling ML, Reid M, Lukacs PM, Gende SM, Lewis SB (2007) Understanding abundance patterns of a declining seabird: implications for monitoring. Ecol Appl 17:2164–2174

    Article  PubMed  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Plant Ecol 80:107–138

    Article  Google Scholar 

  • Maiorano L, Falcucci A, Boitani L (2006) Gap analysis of terrestrial vertebrates in Italy: priorities for conservation planning in a human dominated landscape. Biol Conserv 133:455–473

    Article  Google Scholar 

  • Maiorano L, Falcucci A, Garton EO, Boitani L (2007) Contribution of the Natura 2000 network to biodiversity conservation in Italy. Conserv Biol 21:1433–1444

    Article  PubMed  Google Scholar 

  • Maiorano L, Falcucci A, Boitani L (2008) Size-dependent resistance of protected areas to land-use change. Proc R Soc Lond B 275:1297–1304

    Article  Google Scholar 

  • Marshall CT, Frank KT (1994) Geographic responses of groundfish to variation in abundance: methods of detection and their implementation. Can J Fish Aquat Sci 51:808–816

    Article  Google Scholar 

  • Moons E, Brijs T, Wets G (2008) Hot spots analysis: improving a local indicator of spatial association for application in traffic safety. In: Gervasi O, Murgante B (eds) Computational science and its applications. Proceedings of ICCSA 2008, pp 221–231

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nelson TA, Boots B (2008) Detecting spatial hot spots in landscape ecology. Ecography 31:556–566

    Article  Google Scholar 

  • Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Statterfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owen IPF (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019

    Article  CAS  PubMed  Google Scholar 

  • Petitgas P (1998) Biomass-dependent dynamics of fish spatial distributions characterized by geostatistical aggregation curves. ICES J Mar Sci 55:443–453

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Swain DP, Sinclair AF (1994) Fish distribution and catchability: what is the appropriate measure of distribution? Can J Fish Aquat Sci 51:1046–1054

    Article  Google Scholar 

  • Swain DP, Wade EJ (1993) Density-dependent geographic distribution of Atlantic cod in the southern Gulf of St Lawrence. Can J Fish Aquat Sci 50:725–733

    Article  Google Scholar 

  • Tiefelsdorf M (2002) The saddlepoint approximation of Moran’s I’s and local Moran’s I i ’s reference distributions and their numerical evaluation. Geogr Anal 34:187–206

    Google Scholar 

  • Weathers KC, Levett GM, Likens GE, Lathrop R (2000) The effect of landscape features on deposition to Hunter mountain, Catskill Mountains, New York. Ecol Appl 10:528–540

    Article  Google Scholar 

  • Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, Pressey R (1996) A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conserv Biol 10:155–174

    Article  Google Scholar 

  • Worm B, Lotze HK, Myers RA (2003) Predator diversity hotspots in the blue ocean. Proc Natl Acad Sci USA 100:9884–9888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We especially thank Nathan M. Bacheler for his helpful comments on an earlier draft of the manuscript, and two anonymous reviewers for a useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Bartolino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolino, V., Maiorano, L. & Colloca, F. A frequency distribution approach to hotspot identification. Popul Ecol 53, 351–359 (2011). https://doi.org/10.1007/s10144-010-0229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-010-0229-2

Keywords

Navigation