Skip to main content
Log in

Visualizing temporal cluster changes using Relative Density Self-Organizing Maps

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

We introduce a Self-Organizing Map (SOM)-based visualization method that compares cluster structures in temporal datasets using Relative Density SOM (ReDSOM) visualization. ReDSOM visualizations combined with distance matrix-based visualizations and cluster color linking, is capable of visually identifying emerging clusters, disappearing clusters, split clusters, merged clusters, enlarging clusters, contracting clusters, the shifting of cluster centroids, and changes in cluster density. As an example, when a region in a SOM becomes significantly more dense compared to an earlier SOM, and is well separated from other regions, then the new region can be said to represent a new cluster. The capabilities of ReDSOM are demonstrated using synthetic datasets, as well as real-life datasets from the World Bank and the Australian Taxation Office. The results on the real-life datasets demonstrate that changes identified interactively can be related to actual changes. The identification of such cluster changes is important in many contexts, including the exploration of changes in population behavior in the context of compliance and fraud in taxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adomavicius G, Bockstedt J (2008) C-trend: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data. IEEE TKDE 20(6): 721–735

    Google Scholar 

  2. Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. VLDB 29: 81–92

    Article  Google Scholar 

  3. Aggarwal CC, Yu PS (2009) On clustering massive text and categorical data streams. Knowl Inf Syst. http://www.springerlink.com/content/d508m60uj322rq81/

  4. Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: ACM SIGKDD 2006. New York, pp 554–560

  5. Das G, Lin K-I, Mannila H, Renganathan G, Smyth P (1998) Rule discovery from time series. In: KDD, pp 16–22

  6. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI-1(2): 224–227

    Article  Google Scholar 

  7. Deboeck G, Kohonen T (1998) Visual explorations in finance with Self-Organizing Maps. Springer, London

    MATH  Google Scholar 

  8. Denny, Squire DM (2005) Visualization of cluster changes by comparing Self-Organizing Maps. In: PAKDD 2005, vol 3518, LNCS. Springer, Berlin, pp 410–419

  9. Denny, Williams GJ, Christen P (2008a) Exploratory hot spot profile analysis using interactive visual drill-down self-organizing maps. In: Advances in knowledge discovery and data mining, 12th Pacific-Asia conference, PAKDD 2008, Osaka, Japan, 2008 Proceedings, vol 5012, LNCS. Springer, Berlin, pp 536–543

  10. Denny, Williams GJ, Christen P (2008b) ReDSOM: relative density visualization of temporal changes in cluster structures using self-organizing maps. In: IEEE international conference on data mining (ICDM 2008). IEEE Computer Society, pp 173–182

  11. Ganti V, Gehrke J, Ramakrishnan R, Loh W-Y (2002) A framework for measuring differences in data characteristics. J Comput Syst Sci 64: 542–578

    Article  MATH  MathSciNet  Google Scholar 

  12. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3): 107–145

    Article  MATH  Google Scholar 

  13. Han J, Kamber M (2006) Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  14. Hido S, Idé T, Kashima H, Kubo H, Matsuzawa H (2008) Unsupervised change analysis using supervised learning. In: Advances in knowledge discovery and data mining, 12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan, 2008 Proceedings, vol 5012, LNCS. Springer, Berlin, pp 148–159

  15. Iivarinen J, Kohonen T, Kangas J, Kaski S (1994) Visualizing the clusters on the Self-Organizing Map. In: Carlsson C, Järvi T, Reponen T (eds) Conference on AI research in Finland, vol 12. Finnish AI Society, Helsinki, Finland, pp 122–126

    Google Scholar 

  16. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3): 264–323

    Article  Google Scholar 

  17. Kandylas V, Upham SP, Ungar LH (2008) Finding cohesive clusters for analyzing knowledge communities. Knowl Inf Syst 17(3): 335–354

    Article  Google Scholar 

  18. Kaski S, Kohonen T (1995) Structures of welfare and poverty in the world discovered by the Self-Organizing Map, Report A24, Helsinki University of Technology, Faculty of Information Technology, Laboratory of Computer and Information Science, Espoo, Finland

  19. Kaski S, Lagus K (1996) Comparing Self-Organizing Maps. In: Malsburg C, Seelen W, Vorbrüggen JC, Sendhoff B (eds) ICANN’96, Bochum, Germany, vol 1112, LNCS. Springer, Berlin, pp 809–814

    Google Scholar 

  20. Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 8(1): 1–8

    Article  Google Scholar 

  21. Keogh E, Lin J, Truppel W (2003) Clustering of time series subsequences is meaningless: implications for previous and future research. In: IEEE international conference on data mining (ICDM 2003). Washington, DC, USA, pp 115

  22. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59–69

    Article  MATH  MathSciNet  Google Scholar 

  23. Kohonen T (2001) Self-Organizing Maps, 3rd edn, vol 30 of Springer Series in Information Sciences. Springer, Berlin, Heidelberg

    Google Scholar 

  24. Lingras P, Hogo M, Snorek M (2004) Temporal cluster migration matrices for web usage mining. In: Proceedings of the IEEE/WIC/ACM international conference on web intelligence 00:441–444

  25. Lingras P, Hogo M, Snorek M, West C (2005) Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach. Inf Sci 172(1–2): 215–240

    Article  Google Scholar 

  26. Liu B, Hsu W, Han H-S, Xia Y (2000) Mining changes for real-life applications. In: DaWaK 2000, London, UK, 2000, Proceedings, vol 1874, LNCS. Springer, Berlin, pp 337–346

  27. Pawlak Z, Grzymala-Busse J, Slowinski R, Ziarko W (1995) Rough sets. Commun ACM 38(11): 88–95

    Article  Google Scholar 

  28. Ritter H, Martinetz T, Schulten K (1992) Neural computation and self-organizing maps: an introduction. Addison-Wesley Longman Publishing, Boston

    MATH  Google Scholar 

  29. Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE TKDE 14(4): 750–767

    Google Scholar 

  30. Schlimmer JC, Granger RH (1986) Incremental learning from noisy data. Mach Learn 1(3): 317–354

    Google Scholar 

  31. The Treasury—Australian Government (2006) Press release no. 066’. http://www.treasurer.gov.au/

  32. Tryba V, Metzen S, Goser K (1989) Designing basic integrated circuits by Self-Organizing Feature Maps. In: Neuro-Nîmes’89. International workshop on neural networks and their applications. ARC; SEE, EC2, Nanterre, France, pp 225–235

  33. Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2): 111–126

    Article  MATH  Google Scholar 

  34. Vesanto J, Alhoniemi E (2000) Clustering of the Self-Organizing Map. IEEE TNN 11(3): 586–600

    Google Scholar 

  35. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM toolbox for Matlab 5, Report A57. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland

  36. Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1): 69–101

    Google Scholar 

  37. World Bank (2003) World development indicators 2003. The World Bank, Washington, DC

  38. Yamanishi K, Takeuchi J-I, Williams G, Milne P (2004) On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining Knowl Discov 8(3): 275–300

    Article  MathSciNet  Google Scholar 

  39. Zagha, R, Nankani, GT (eds) (2005) Economic growth in the 1990s: learning from a decade of reform. World Bank Publications, Washington, DC

    Google Scholar 

  40. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS (eds) Proceedings of the 1996 ACM SIGMOD international conference on management of data, Montreal, Quebec, Canada, June 4–6, 1996. ACM Press, pp 103–114

  41. Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows. Knowl Inf Syst 15(2): 181–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denny, Williams, G.J. & Christen, P. Visualizing temporal cluster changes using Relative Density Self-Organizing Maps. Knowl Inf Syst 25, 281–302 (2010). https://doi.org/10.1007/s10115-009-0264-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-009-0264-5

Keywords

Navigation