Skip to main content
Log in

Separating doubly nonnegative and completely positive matrices

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then to separate a given DNN but non-CP matrix from the cone of CP matrices. We describe two different constructions for such a separation that apply to 5 × 5 matrices that are DNN but non-CP. We also describe a generalization that applies to larger DNN but non-CP matrices having block structure. Computational results illustrate the applicability of these separation procedures to generate improved bounds on difficult problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher K.M., Burer S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Prog. B 124, 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burer S., Anstreicher K.M., Dür M.: The difference between 5 × 5 doubly nonnegative and completely positive matrices. Linear Algebra Appl. 431, 1539–1552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barioli F.: Completely positive matrices with a book-graph. Linear Algebra Appl. 277, 11–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bundfuss S., Dür M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20, 30–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bomze I.M., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim. 24, 163–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bomze I.M., Frommlet F., Locatelli M.: Copositivity cuts for improving SDP bounds on the clique number. Math. Prog. B 124, 13–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burer S., Letchford A.N.: On nonconvex quadratic programming with box constriants. SIAM J. Optim. 20, 1073–1089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bomze I.M., Locatelli M., Tardella F.: New and old bounds for standard quadratic programming: dominance, equivalence and incomparability. Math. Prog. 115, 31–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berman A., Shaked-Monderer N.: Completely Positive Matrices. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  10. Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Prog. 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burer S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math. Prog. Comp. 2, 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berman A., Xu C.: 5 × 5 Completely positive matrices. Linear Algebra Appl. 393, 55–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong H., Anstreicher K.: On ‘5 × 5 Completely positive matrices’. Linear Algebra Appl. 433, 1001–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dür M., Still G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Hall M. Jr: Combinatorial Theory. Blaisdell Publishing Company, Waltham (1967)

    MATH  Google Scholar 

  17. Hogben L., Johnson C.R., Reams R.: The copositive completion problem. Linear Algebra Appl. 408, 207–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kogan N., Berman A.: Characterization of completely positive graphs. Discret. Math. 114, 297–304 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peña J., Vera J., Zuluaga L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18, 87–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Väliaho H.: Almost copositive matrices. Linear Algebra Appl. 116, 121–134 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yajima Y., Fujie T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Global Optim. 13, 151–170 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Anstreicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Anstreicher, K. Separating doubly nonnegative and completely positive matrices. Math. Program. 137, 131–153 (2013). https://doi.org/10.1007/s10107-011-0485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0485-8

Mathematics Subject Classification (2000)

Navigation