Skip to main content
Log in

Computable representations for convex hulls of low-dimensional quadratic forms

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let \({\mathcal{C}}\) be the convex hull of points \({{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}\). Representing or approximating \({\mathcal{C}}\) is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and \({\mathcal{F}}\) is a simplex, then \({\mathcal{C}}\) has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and \({\mathcal{F}}\) is a box, then \({\mathcal{C}}\) has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of \({{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}\) when \({\mathcal{F}\subset\Re^2}\) is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of \({{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}\). When n = 3 and \({\mathcal{F}}\) is a box, we show that a representation for \({\mathcal{C}}\) can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher K.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bomze I.: Branch-and-bound approaches to standard quadratic optimization problems. J. Glob. Optim. 22, 27–37 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bomze I., Dür M., de Klerk E., Roos C., Quist A., Terlaky T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  4. Bomze I., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite, and copositive programming. J. Glob. Optim. 24, 163–185 (2002)

    Article  MATH  Google Scholar 

  5. Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Prog. 120, 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jach M., Michaels D., Weismantel R.: The convex envelope of (n − 1)-convex functions. SIAM. J. Optim. 19, 1451–1466 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kogan N., Berman A.: Characterization of completely positive graphs. Discrete Math. 114, 297–304 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Linderoth J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Prog. 103, 251–282 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Motzkin T., Straus E.: Maxima for graphs and a new proof of a theorem of Túran. Can. J. Math. 17, 533–540 (1965)

    MATH  MathSciNet  Google Scholar 

  10. Pataki G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23, 339–358 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sahinidis N.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sherali H., Adams W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)

    Google Scholar 

  13. Sherali H., Alameddine A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sherali H., Tuncbilek C.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–31 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Vandenbussche D., Nemhauser G.: A branch-and-cut algorithm for nonconvex quadratic programming with box constraints. Math. Prog. 102, 559–575 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ye Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Prog. 84, 219–226 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt M. Anstreicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anstreicher, K.M., Burer, S. Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124, 33–43 (2010). https://doi.org/10.1007/s10107-010-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0355-9

Keywords

Mathematics Subject Classification (2000)

Navigation