Skip to main content

Advertisement

Log in

An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium–aluminum–garnet (Er:YAG) lasers

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Erbium:yttrium–aluminum–garnet (Er:YAG) laser treatment is an effective option for the removal of bacterial plaques. Many studies have shown that Er:YAG lasers cannot re-establish the biocompatibility of titanium surfaces. The aim of this study was to evaluate the responses of the human osteoblast-like cell line, SaOs-2, to sand-blasted and acid-etched (SLA) titanium surface irradiation using different energy settings of an Er:YAG laser by examining cell viability and morphology. Forty SLA titanium disks were irradiated with an Er:YAG laser at a pulse energy of either 60 or 100 mJ with a pulse frequency of 10 Hz under water irrigation and placed in a 24-well plate. Human osteoblast-like SaOs-2 cells were seeded onto the disks in culture media. Cells were then kept in an incubator with 5 % carbon dioxide at 37 °C. Each experimental group was divided into two smaller groups to evaluate cell morphology by scanning electron microscope and cell viability using 3-4,5-dimethylthiazol 2,5-diphenyltetrazolium bromide test. In both the 60 and the 100 mJ experimental groups, spreading morphologies, with numerous cytoplasmic extensions, were observed prominently. Similarly, a majority of cells in the control group exhibited spreading morphologies with abundant cytoplasmic extensions. There were no significant differences among the laser and control groups. The highest cell viability rate was observed in the 100 mJ laser group. No significant differences were observed between the cell viability rates of the two experimental groups (p = 1.00). In contrast, the control group was characterized by a significantly lower cell viability rate (p < 0.001). Treatments with an Er:YAG laser at a pulse energy of either 60 or 100 mJ do not reduce the biocompatibility of SLA titanium surfaces. In fact, modifying SLA surfaces with Er:YAG lasers improved the biocompatibility of these surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. BeKer W, Beker BE, Newman MG, Nyman S (1990) Clinical and microbiological findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 5(1):31–38

    Google Scholar 

  2. Mombelli A, Buser D, Lang NP (1988) Colonization of osseointegrated titanium implants in the edentulous patients. Early results. Oral Microbiol Immunol 3(3):113–120

    Article  CAS  PubMed  Google Scholar 

  3. Thomson-Neal D, Evans GH, Meffert RM (1989) Effects of various prophylactic treatments on titanium, sapphire, and hydroxyapatite-coated implants: an SEM study. Int J Periodontics Restorative Dent 9(4):300–311

    CAS  PubMed  Google Scholar 

  4. Fox SC, Moriarty JD, Kusy RP (1990) The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol 61(8):485–490

    Article  CAS  PubMed  Google Scholar 

  5. Karring ES, Stavropoulos A, Ellegaard B, Karring T (2005) Treatment of peri-implantitis by the vector system. Clin Oral Implants Res 16(3):288–293

    Article  PubMed  Google Scholar 

  6. Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Beker J (2003) Effects of an Er:YAG laser and the vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14(6):784–792

    Article  PubMed  Google Scholar 

  7. Kreisler M, Gotz H, Dushner H, d’Hoedt B (2002) Effects of Nd:YAG, Ho:YAG,Er:YAG,CO2 and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211

    PubMed  Google Scholar 

  8. Kreisler M, Kohnen W, Marrinello C, Gotz H, Duschner H, Janson B, d’Hoedt B (2002) Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 73:1292–1296

    Article  PubMed  Google Scholar 

  9. Takasaki A, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I (2007) Er:YAG laser therapy for peri-implant infection: a histological study. Laser Med Sci 22:143–157

    Article  Google Scholar 

  10. Kreisler M, Kohnen W, Christofers A, Gotz H, Jansen B, Duschner H, Hoedt B (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implant Res 16:36–43

    Article  Google Scholar 

  11. Gaggl A, Schultes G, Müller WD, Kärcher H (2000) Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials 21(10):1067–1073

    Article  CAS  PubMed  Google Scholar 

  12. Cho SA, Jung SK (2003) A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials 24(26):4859–4863

    Article  CAS  PubMed  Google Scholar 

  13. Cei S, Legitimo A, Barachini S, Consolini R, Sammartino G, Mattii L, Gabriele M, Graziani F (2011) Effect of laser micromachining of titanium on viability and responsiveness of osteoblast-like cells. Implant Dent 20(4):285–291

    Article  PubMed  Google Scholar 

  14. Khosroshahi ME, Mahmoodi M, Saeedinasab H (2009) In vitro and in vivo studies of osteoblast cell response to a titanium-6 aluminium-4 vanadium surface modified by neodymium: yttrium–aluminium–garnet laser and silicon carbide paper. Laser Med Sci 24:925–939

    Article  CAS  Google Scholar 

  15. Guo Z, Zhou L, Rong M, Zhu A, Geng H (2010) Bone response to a pure titanium implant surface modified by laser etching and microarc oxidation. Int J Oral Maxillofac Implants 25(1):130–136

    PubMed  Google Scholar 

  16. Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, Beker J (2005) Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Invest 9:111–117

    Article  Google Scholar 

  17. Schwarz F, Papanicolau P, Rothamel D, Beck B, Herten M, Becker J (2006) Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces. J Biomed Mater Res 77a:437–444

    Article  CAS  Google Scholar 

  18. Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G, Passeri G (2011) The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol 82(8):1169–1177. doi:10.1902/jop.2010.100428, Epub 2010 Dec 28

    Article  CAS  PubMed  Google Scholar 

  19. Ando Y, Aoki A, Watanabe H, Ishikawa I (1996) Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med 19(2):190–200

    Article  CAS  PubMed  Google Scholar 

  20. Kreisler M, Al Haj H, dHoedt B (2002) Temperature changes at the implant–bone interface during simulated surface decontamination with an Er:YAG laser. Int J Prosthodont 15(6):582–587

    PubMed  Google Scholar 

  21. Stubinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, Sader R (2010) Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25:104–111

    PubMed  Google Scholar 

  22. Lee J-H, Kwon Y-H, Herr Y, Shin S-I, Chung J-H (2011) Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants. Periodontal Implant Sci 41(3):135–142

    Article  Google Scholar 

  23. Shin SI, Min HK, Park BH, Kwon YH, Park JB, Herr Y, Heo SJ, Chung JH (2011) The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci 26(6):767–776, Epub 2010 Aug 6

    Article  PubMed  Google Scholar 

  24. Romanos G, Crespi R, Barone A, Covani U (2006) Osteoblast attachment on titanium disks after laser irradiation. Int J Oral Maxillofac Implants 21(2):232–236

    PubMed  Google Scholar 

  25. Ishikawa I, Aoki A, Takasaki AA (2004) Potential applications of erbium:YAG laser in periodontics. J Periodontal Res 39(4):275–285

    Article  PubMed  Google Scholar 

  26. Schwarz F, Nuesry E, Bieling K, Herten M, Becker J (2006) Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol 77:1820–1827

    Article  CAS  PubMed  Google Scholar 

  27. Zhu X, Chen J, Scheideler L, Reichl R, Geis Gerstorfer J (2004) Effects of topography and composition of titanium surface oxides on osteoblast response. Biomaterials 25(18):4087–4103

    Article  CAS  PubMed  Google Scholar 

  28. Inoue T, Cox JE, Pilliar RM, Melcher AH (1987) Effect of surface geometry of smooth and porous coated titanium alloy on the orientation of fibroblasts in vitro. J Biomed Mater Res 21(1):107–126

    Article  CAS  PubMed  Google Scholar 

  29. Sennerby L, Lekholm U (1993) The soft tissue response to titanium abutments retrieved from humans and reimplanted in rats. A light microscopic study. Clin Oral Implants Res 4(1):23–27

    Article  CAS  PubMed  Google Scholar 

  30. Baier RE, Meyer AE (1988) Implant surface preparation. Int J Oral Maxillofac Implants 3(1):9–20

    CAS  PubMed  Google Scholar 

  31. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25(14):2695–2711

    Article  CAS  PubMed  Google Scholar 

  32. Keller JC, Draughn RA, Wightman JP, Dougherty WJ, Meletiou SD (1990) Characterization of sterilized CP titanium implant surfaces. Int J Oral Maxillofac Implants 5(4):360–367

    CAS  PubMed  Google Scholar 

  33. Perez del Pino A, Serra P, Morenzo JL (2002) Oxidation of titanium through Nd:YAG laser irradiation. Appl Surf Sci 8129:1–4

    Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Dental Branch of Islamic Azad University in Tehran, Iran. The authors express their appreciation to the Dorsan Teb Pars Company of Iran and Dentium Company of the Republic of Korea for kindly providing the titanium disks for this study.

Disclosure

The authors have no financial interests in any of the companies or products mentioned in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Ayobian-Markazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayobian-Markazi, N., Fourootan, T. & Zahmatkesh, A. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium–aluminum–garnet (Er:YAG) lasers. Lasers Med Sci 29, 47–53 (2014). https://doi.org/10.1007/s10103-012-1224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1224-y

Keywords

Navigation