Skip to main content
Log in

Effects of sphingosine-1-phosphate on pacemaker activity of interstitial cells of Cajal from mouse small intestine

  • Research Article
  • Published:
Molecules and Cells

Abstract

Interstitial cells of Cajal (ICC) are the pacemaker cells that generate the rhythmic oscillation responsible for the production of slow waves in gastrointestinal smooth muscle. Spingolipids are known to present in digestive system and are responsible for multiple important physiological and pathological processes. In this study, we are interested in the action of sphingosine 1-phosphate (S1P) on ICC. S1P depolarized the membrane and increased tonic inward pacemaker currents. FTY720 phosphate (FTY720P, an S1P1,3,4,5 agonist) and SEW 2871 (an S1P1 agonist) had no effects on pacemaker activity. Suramin (an S1P3 antagonist) did not block the S1P-induced action on pacemaker currents. However, JTE-013 (an S1P2 antagonist) blocked the S1P-induced action. RT-PCR revealed the presence of the S1P2 in ICC. Calphostin C (a protein kinase C inhibitor), NS-398 (a cyclooxygenase-2 inhibitor), PD 98059 (a p42/44 inhibitor), or SB 203580 (a p38 inhibitor) had no effects on S1P-induced action. However, c-jun NH2-terminal kinase (JNK) inhibitor II suppressed S1P-induced action. External Ca2+-free solution or thapsigargin (a Ca2+-ATPase inhibitor of endoplasmic reticulum) suppressed action of S1P on ICC. In recording of intracellular Ca2+ ([Ca2+]i) concentration using fluo-4/AM S1P increased intensity of spontaneous [Ca2+]i oscillations in ICC. These results suggest that S1P can modulate pacemaker activity of ICC through S1P2 via regulation of external and internal Ca2+ and mitogenactivated protein kinase activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alemany, R., Sichelschmidt, B., Zu Heringdorf, D.M., Lass, H., Van Koppen, C.J., and Jakobs, K.H. (2000). Stimulation of sphingosine-1-phosphate formation by the P2Y2 receptor in HL-60 cells: Ca2+ requirement and implication in receptor-mediated Ca2+ mobilization, but not MAP kinase activation. Mol. Pharmacol. 58, 491–497.

    PubMed  CAS  Google Scholar 

  • Alvarez, S.E., Milstien, S., and Spiegel, S. (2007). Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrin. Metab. 18, 300–307.

    Article  CAS  Google Scholar 

  • Anliker, B., and Chun, J. (2004). Lysophospholipid G protein-coupled receptors. J. Biol. Chem. 279, 20555–20558.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, A., Czyborra, P., Fetscher, C., Meyer Zu Heringdorf, D., Jakobs, K.H., and Michel, M.C. (2000). Sphingosine 1 phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. Br. J. Pharmacol. 130, 1871–1877.

    Article  PubMed  CAS  Google Scholar 

  • Blom, T., Slotte, J.P., Pitson, S.M., and Törnquist, K. (2005). Enhan-cement of intracellular sphingosine-1-phosphate production by inositol 1, 4, 5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cell. Signal. 17, 827–836.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S., Yeum, C.H., Kim, Y.D., Park, C.G., Kim, M.Y., Park, J.S., Jeong, H.S., Kim, B.J., So, I., and Kim, K.W. (2010). Receptor tyrosine and MAP kinase are involved in effects of H2O2 on interstitial cells of Cajal in murine intestine. J. Cell. Mol. Med. 14, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Dragusin, M., Wehner, S., Kelly, S., Wang, E., Merrill Jr, A.H., Kalff, J.C., and Van Echten-Deckert, G. (2006). Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: implications for postoperative ileus. FASEB J. 20, 1930–1932.

    Article  PubMed  CAS  Google Scholar 

  • Fukata, Y., Kaibuchi, K., and Amano, M. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Furness, J.B., Hind, A.J., Ngui, K., Robbins, H.L., Clerc, N., Merrot, T., Tjandra, J.J., and Poole, D.P. (2006). The distribution of PKC isoforms in enteric neurons, muscle and interstitial cells of the human intestine. Histochem. Cell Biol. 126, 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings, D.G. (2006). Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch. Pharmacol. 373, 18–29.

    Article  PubMed  CAS  Google Scholar 

  • Hla, T. (2004). Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 513–520.

  • Huizinga, J.D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H.B., and Bernstein, A. (1995). W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349.

    Article  PubMed  CAS  Google Scholar 

  • Huizinga, J.D., Zhu, Y., Ye, J., and Molleman, A. (2002). Highconductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology 123, 1627–1636.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.J., Lim, H.H., Yang, D.K., Jun, J.Y., Chang, I.Y., Park, C.S., So, I., Stanfield, P.R., and Kim, K.W. (2005). Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504–1517.

    Article  PubMed  CAS  Google Scholar 

  • Mostafa, R.M., Moustafa, Y.M., and Hamdy, H. (2010). Interstitial cells of Cajal, the Maestro in health and disease. World J. Gastroenterol. 16, 3239.

    Article  PubMed  Google Scholar 

  • Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., Ui, M., and Okajima, F. (2000). Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352, 809–815.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, S., Kajioka, S., Goto, K., Takaki, M., and Liu, H.N. (2007). Calcium associated mechanisms in gut pacemaker activity. J. Cell. Mol. Med. 11, 958–968.

    Article  PubMed  CAS  Google Scholar 

  • Nodai, A., Machida, T., Izumi, S., Hamaya, Y., Kohno, T., Igarashi, Y., Iizuka, K., Minami, M., and Hirafuji, M. (2007). Sphingosine 1-phosphate induces cyclooxygenase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci. 80, 1768–1776.

    Article  PubMed  CAS  Google Scholar 

  • Pfaff, M., Powaga, N., Akinci, S., Schütz, W., Banno, Y., Wiegand, S., Kummer, W., Wess, J., and Haberberger, R.V. (2005). Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways. Respir. Res. 6, 48.

    Article  PubMed  Google Scholar 

  • Porcher, C., Horowitz, B., Bayguinov, O., Ward, S.M., and Sanders, K.M. (2002). Constitutive expression and function of cyclooxygenase-2 in murine gastric muscles. Gastroenterology 122, 1442–1454.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeldt, H.M., Amrani, Y., Watterson, K.R., Murthy, K.S., Panettieri, R.A.Jr., and Spiegel, S. (2003). Sphingosine-1-phosphate stimulates contraction of human airway smooth muscle cells. FASEB J. 17, 1789–1799.

    Article  PubMed  CAS  Google Scholar 

  • Salomone, S., Potts, E., Tyndall, S., Ip, P., Chun, J., Brinkmann, V., and Waeber, C. (2008). Analysis of sphingosine 1 phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br. J. Pharmacol. 153, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, T., and Hla, T. (2004). Structural and functional charac teristics of S1P receptors. J. Cell. Biochem. 92, 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, K.M. (1996). A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492–515.

    Article  PubMed  CAS  Google Scholar 

  • Song, H.J., Choi, T.S., Chung, F.Y., Park, S.Y., Ryu, J.S., Woo, J.G., Min, Y.S., Shin, C.Y., and Sohn, U.D. (2006). Sphingosine 1-phosphate-induced signal transduction in cat esophagus smooth muscle cells. Mol. Cells 21, 42–51.

    PubMed  CAS  Google Scholar 

  • Spiegel, S., and Merrill, Jr. A. (1996). Sphingolipid metabolism and cell growth regulation. FASEB J. 10, 1388–1397.

    PubMed  CAS  Google Scholar 

  • Takuwa, Y., Okamoto, H., Takuwa, N., Gonda, K., Sugimoto, N., and Sakurada, S. (2001). Subtype-specific, differential activities of the EDG family receptors for sphingosine-1-phosphate, a novel lysophospholipid mediator. Mol. Cell. Endocrinol. 177, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Van Koppen, C.J., Meyer zu Heringdorf, D., Alemany, R., and Jakobs, K.H. (2001). Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci. 68, 2535–2540.

    Article  PubMed  Google Scholar 

  • Ward, S.M., Burns, A.J., Torihashi, S., and Sanders, K.M. (1994). Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–97.

    PubMed  CAS  Google Scholar 

  • Ward, S., Ordög, T., Koh, S., Baker, S.A., Jun, J., Amberg, G., Monaghan, K., and Sanders, K.M. (2000). Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J. Physiol. 525, 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Watterson, K.R., Ratz, P.H., and Spiegel, S. (2005). The role of sphingosine-1-phosphate in smooth muscle contraction. Cell. Signal. 17, 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Young, K., and Nahorski, S. (2002). Sphingosine 1-phosphate: a Ca2+ release mediator in the balance. Cell Calcium 32, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., and Murthy, K.S. (2004). Distinctive G protein-dependent signaling in smooth muscle by sphingosine 1-phosphate receptors S1P1 and S1P2. Am. J. Physiol. Cell Physiol. 286, C1130–C1138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Yeoul Jun.

About this article

Cite this article

Kim, Y.D., Han, K.T., Lee, J. et al. Effects of sphingosine-1-phosphate on pacemaker activity of interstitial cells of Cajal from mouse small intestine. Mol Cells 35, 79–86 (2013). https://doi.org/10.1007/s10059-013-2282-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2282-0

Keywords

Navigation