Skip to main content
Log in

The S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase 2 is reduced by interaction with glutathione peroxidase 3 in Saccharomyces cerevisiae

  • Published:
Molecules and Cells

Abstract

Glutathione peroxidases (Gpxs) are the key anti-oxidant enzymes found in Saccharomyces cerevisiae. Among the three Gpx isoforms, glutathione peroxidase 3 (Gpx3) is ubiquitously expressed and modulates the activities of redox-sensitive thiol proteins involved in various biological reactions. By using a proteomic approach, glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2; EC 1.2.1.12) was found as a candidate protein for interaction with Gpx3. GAPDH, a key enzyme in glycolysis, is a multi-functional protein with multiple intracellular localizations and diverse activities. To validate the interaction between Gpx3 and GAPDH2, immunoprecipitation and a pull-down assay were carried out. The results clearly showed that GAPDH2 interacts with Gpx3 through its carboxyl-terminal domain both in vitro and in vivo. Additionally, Gpx3 helps to reduce the S-nitrosylation of GAPDH upon nitric oxide (NO) stress; this subsequently increases cellular viability. On the basis of our findings, we suggest that Gpx3 protects GAPDH from NO stress and thereby contributes to the maintenance of homeostasis during exposure to NO stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abat, J.K., Saigal, P., and Deswal, R. (2008). S-nitrosylation — another biological switch like phosphorylation. Physiol. Mol. Biol. Plants 14, 119–130.

    Article  CAS  Google Scholar 

  • Chuang, D.M., Hough, C., and Senatorov, V.V. (2005). Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 45, 269–290.

    Article  PubMed  CAS  Google Scholar 

  • Delaunay, A., Pflieger, D., Barrault, M.B., Vihn, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111, 471–481.

    Article  PubMed  CAS  Google Scholar 

  • Delledonne, M. (2005). NO news is good news for plants. Curr. Opin. Plant Biol. 8, 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Derakhshan, B., Wille, P.C., and Gross, S.S. (2007). Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat. Prot. 2, 1685–1691.

    Article  CAS  Google Scholar 

  • Hara, M.R., Agrawal, N., Kim, S.F., Cascio, M.B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J.H., Tankou, S.K., Hester, L.D., et al. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7, 665–674.

    Article  PubMed  CAS  Google Scholar 

  • Hara, MR., Cascio, M.R., and Sawa, A. (2006). GAPDH as a sensor of NO stress. Biochim. Biophys. Acta 1762, 502–509.

    PubMed  CAS  Google Scholar 

  • Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., and Stamler, J.S. (2005). Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84, 9265–9269.

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto, A., Bole, D.G., and Ueda, T. (2003). Glycolysis and glutamate accumulation into synaptic vesicles. J. Biol. Chem. 278, 5929–5940.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, I., and Kimura, A. (1999). Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274, 27002–27009.

    Article  PubMed  CAS  Google Scholar 

  • Kho, C.W., Lee, P.Y., Bae, K.-H., Cho, S., Lee, Z.W., Park, B.C., Kang, S., Lee, D.H., and Park, S.G. (2006). Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348, 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P.Y., Bae, K.-H., Kho, C.W., Kang, S., Lee, D.H., Cho, S., Kang, S., Lee, S.C., Park, B.C., and Park, S.G. (2008). Interactome analysis of yeast glutathione peroxidase 3. J. Microbiol. Biotechnol. 18, 1364–1367.

    PubMed  CAS  Google Scholar 

  • Lee, H., Chi, S.-W., Lee, P.Y., Kang, S., Cho, S., Lee, C.-K., Bae, K.-H., Park, B.C., and Park, S.G. (2009). Reduced formation of advanced glycation endproducts via interactions between glutathione peroxidase 3 and dihydroxyacetone kinase 1. Biochem. Biophys. Res. Commun. 389, 178–180.

    Google Scholar 

  • Meyer-Sieglar, K., Mauro, D.J., Seal, G., Wurzer, J., Deriel, J.K., and Sirover, M.A. (1991). A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 88, 8460–8464.

    Article  Google Scholar 

  • Michael, A.S. (1999). New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432, 159–184.

    Article  Google Scholar 

  • Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064.

    PubMed  CAS  Google Scholar 

  • Nilkantha, S., Hara, M.R., Kornberg, M.D., Cascio, M.B., Bae, B.I., Shahani, N., Thomas, B., Dawson, T.D., Dawson, V.L., Snyder, S.H., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873.

    Article  Google Scholar 

  • Sies, H., and Cadenas, E. (1985). Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 311, 617–631.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., and Green, M.R. (1993). Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259, 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Soriano, F.X., Baxter, P., Murray, L.M., Sporn, M.B., Gillingwater, T.H., and Hardingham, G.E. (2009). Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol. Cells 27, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Stamler, J.S., Lamas, S., and Fang, F.C. (2001). Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106, 675–683.

    Article  PubMed  CAS  Google Scholar 

  • Tisdale, E.J. (2001). Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J. Biol. Chem. 276, 2480–2486.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S.O., Yun, C.H., and Chung, A.S. (2002). Dose effect of oxidative stress on signal transduction in aging. Mech. Aging Dev. 123, 1597–1604.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byoung Chul Park or Sung Goo Park.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Lee, P.Y., Bae, KH., Jeong, D.G. et al. The S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase 2 is reduced by interaction with glutathione peroxidase 3 in Saccharomyces cerevisiae . Mol Cells 31, 255–259 (2011). https://doi.org/10.1007/s10059-011-0029-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0029-3

Keywords

Navigation