Skip to main content
Log in

C4ORF48, a gene from the Wolf-Hirschhorn syndrome critical region, encodes a putative neuropeptide and is expressed during neocortex and cerebellar development

  • SHORT COMMUNICATION
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

In order to identify novel genes involved in mental retardation/intellectual disability, we focused on a microdeletion reported in a patient with a mild form of Wolf-Hirschhorn syndrome. This patient presented with attention-deficit hyperactivity disorder, some learning and fine motor deficits as well as facial abnormalities. The deleted region included three genes. Here, we report the first characterization of one of these genes, C4ORF48. C4ORF48 encodes a short (139 aa) evolutionarily conserved protein with a predicted signal peptide and two potential dibasic convertase cleavage sites. In mice, we demonstrated expression of the corresponding protein exclusively in brain tissue using an anti-mouse C4Orf48 polyclonal antibody. Detailed RNA in situ hybridization experiments revealed expression of C4Orf48 in different zones during cortical and cerebellar development, as well as in almost all cortical and subcortical regions of the adult mouse brain. Based on the present data, we propose that C4Orf48 probably encodes a novel neuropeptide, which, if hemizygously deleted, may be involved in the observed intellectual and fine motor disabilities and thus in the overall neurological aspects of Wolf-Hirschhorn syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hoogenraad CC, Koekkoek B, Akhmanova A, Krugers H, Dortland B, Miedema M, van Alphen A, Kistler WM, Jaegle M, Koutsourakis M, Van Camp N, Verhoye M, van der Linden A, Kaverina I, Grosveld F, De Zeeuw CI, Galjart N (2002) Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat Genet 32(1):116–127

    Article  PubMed  CAS  Google Scholar 

  2. Zhao C, Aviles C, Abel RA, Almli CR, McQuillen P, Pleasure SJ (2005) Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development 132(12):2917–2927

    Article  PubMed  CAS  Google Scholar 

  3. Shinawi M, Schaaf CP, Bhatt SS, Xia Z, Patel A, Cheung SW, Lanpher B, Nagl S, Herding HS, Nevinny-Stickel C, Immken LL, Patel GS, German JR, Beaudet AL, Stankiewicz P (2009) A small recurrent deletion within 15q13.3 is associated with a range of neurodevelopmental phenotypes. Nat Genet 41(12):1269–1271

    Article  PubMed  CAS  Google Scholar 

  4. Wolf U, Reinwein H, Porsch R, Schroter R, Baitsch H (1965) Deficiency on the short arms of a chromosome no. 4. Humangenetik 1(5):397–413

    PubMed  CAS  Google Scholar 

  5. Hirschhorn K, Cooper HL, Firschein IL (1965) Deletion of short arms of chromosome 4–5 in a child with defects of midline fusion. Humangenetik 1(5):479–482

    PubMed  CAS  Google Scholar 

  6. Wright TJ, Ricke DO, Denison K, Abmayr S, Cotter PD, Hirschhorn K, Keinanen M, McDonald-McGinn D, Somer M, Spinner N, Yang-Feng T, Zackai E, Altherr MR (1997) A transcript map of the newly defined 165 kb Wolf-Hirschhorn syndrome critical region. Hum Mol Genet 6(2):317–324

    Article  PubMed  CAS  Google Scholar 

  7. Zollino M, Lecce R, Fischetto R, Murdolo M, Faravelli F, Selicorni A, Butte C, Memo L, Capovilla G, Neri G (2003) Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2. Am J Hum Genet 72(3):590–597

    Article  PubMed  CAS  Google Scholar 

  8. Maas NM, Van Buggenhout G, Hannes F, Thienpont B, Sanlaville D, Kok K, Midro A, Andrieux J, Anderlid BM, Schoumans J, Hordijk R, Devriendt K, Fryns JP, Vermeesch JR (2008) Genotype-phenotype correlation in 21 patients with Wolf-Hirschhorn syndrome using high resolution array comparative genome hybridisation (CGH). J Med Genet 45(2):71–80

    Article  PubMed  CAS  Google Scholar 

  9. Endele S, Fuhry M, Pak SJ, Zabel BU, Winterpacht A (1999) LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients. Genomics 60(2):218–225

    Article  PubMed  CAS  Google Scholar 

  10. Schlickum S, Moghekar A, Simpson JC, Steglich C, O’Brien RJ, Winterpacht A, Endele SU (2004) LETM1, a gene deleted in Wolf-Hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial protein. Genomics 83(2):254–261

    Article  PubMed  CAS  Google Scholar 

  11. Dimmer KS, Navoni F, Casarin A, Trevisson E, Endele S, Winterpacht A, Salviati L, Scorrano L (2008) LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet 17(2):201–214

    Article  PubMed  CAS  Google Scholar 

  12. Zollino M, Murdolo M, Marangi G, Pecile V, Galasso C, Mazzanti L, Neri G (2008) On the nosology and pathogenesis of Wolf-Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review. Am J Med Genet C Semin Med Genet 148C(4):257–269

    Article  PubMed  CAS  Google Scholar 

  13. Engbers H, van der Smagt JJ, van 't Slot R, Vermeesch JR, Hochstenbach R, Poot M (2009) Wolf-Hirschhorn syndrome facial dysmorphic features in a patient with a terminal 4p16.3 deletion telomeric to the WHSCR and WHSCR 2 regions. Eur J Hum Genet 17(1):129–132

    Article  PubMed  CAS  Google Scholar 

  14. Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y (2009) A histone h3 lysine 36 trimethyltransferase links Nkx2–5 to Wolf-Hirschhorn syndrome. Nature 460(7252):287–291

    Article  PubMed  CAS  Google Scholar 

  15. Rauch A, Schellmoser S, Kraus C, Dorr HG, Trautmann U, Altherr MR, Pfeiffer RA, Reis A (2001) First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype-phenotype correlation. Am J Med Genet 99(4):338–342

    Article  PubMed  CAS  Google Scholar 

  16. Zenker M, Mayerle J, Lerch MM, Tagariello A, Zerres K, Durie PR, Beier M, Hulskamp G, Guzman C, Rehder H, Beemer FA, Hamel B, Vanlieferinghen P, Gershoni-Baruch R, Vieira MW, Dumic M, Auslender R, Gil-da-Silva-Lopes VL, Steinlicht S, Rauh M, Shalev SA, Thiel C, Ekici AB, Winterpacht A, Kwon YT, Varshavsky A, Reis A (2005) Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson–Blizzard syndrome). Nat Genet 37(12):1345–1350

    Article  PubMed  CAS  Google Scholar 

  17. Brodskii LI, Ivanov VV, Kalaidzidis Ia L, Leontovich AM, Nikolaev VK, Feranchuk SI, Drachev VA (1995) GeneBee-NET: an internet based server for biopolymer structure analysis. Biokhimiia 60(8):1221–1230

    PubMed  CAS  Google Scholar 

  18. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  PubMed  Google Scholar 

  19. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–36

    Article  PubMed  CAS  Google Scholar 

  20. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37(Database issue):D229–D232

    Article  PubMed  CAS  Google Scholar 

  21. de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(Web Server issue):W362–W365

    Article  PubMed  Google Scholar 

  22. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 34(Web Server issue):W267–W272

    Article  PubMed  CAS  Google Scholar 

  23. Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A, Nabeshima T, Madhavarao CN, Namboodiri AM (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme a metabolism in the CNS. Brain Res 1335:1–13

    Article  PubMed  CAS  Google Scholar 

  24. Okumura T, Takeuchi S, Motomura W, Yamada H, Egashira Si S, Asahi S, Kanatani A, Ihara M, Kohgo Y (2001) Requirement of intact disulfide bonds in orexin-A-induced stimulation of gastric acid secretion that is mediated by OX1 receptor activation. Biochem Biophys Res Commun 280(4):976–981

    Article  PubMed  CAS  Google Scholar 

  25. Syed Ibrahim B, Pattabhi V (2005) Trypsin inhibition by a peptide hormone: crystal structure of trypsin–vasopressin complex. J Mol Biol 348(5):1191–1198

    Article  PubMed  CAS  Google Scholar 

  26. Roy JF, Chretien MN, Woodside B, English AM (2007) Reduction and S-nitrosation of the neuropeptide oxytocin: implications for its biological function. Nitric Oxide 17(2):82–90

    Article  PubMed  CAS  Google Scholar 

  27. Holmgren S, Jensen J (2001) Evolution of vertebrate neuropeptides. Brain Res Bull 55(6):723–735

    Article  PubMed  CAS  Google Scholar 

  28. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 48:393–423

    Article  PubMed  CAS  Google Scholar 

  29. Schwarting GA, Wierman ME, Tobet SA (2007) Gonadotropin-releasing hormone neuronal migration. Semin Reprod Med 25(5):305–312

    Article  PubMed  CAS  Google Scholar 

  30. Decressac M, Prestoz L, Veran J, Cantereau A, Jaber M, Gaillard A (2009) Neuropeptide Y stimulates proliferation, migration and differentiation of neural precursors from the subventricular zone in adult mice. Neurobiol Dis 34(3):441–449

    Article  PubMed  CAS  Google Scholar 

  31. Rustay NR, Wrenn CC, Kinney JW, Holmes A, Bailey KR, Sullivan TL, Harris AP, Long KC, Saavedra MC, Starosta G, Innerfield CE, Yang RJ, Dreiling JL, Crawley JN (2005) Galanin impairs performance on learning and memory tasks: findings from galanin transgenic and GAL-R1 knockout mice. Neuropeptides 39(3):239–243

    Article  PubMed  CAS  Google Scholar 

  32. Kelly MA, Beuckmann CT, Williams SC, Sinton CM, Motoike T, Richardson JA, Hammer RE, Garry MG, Yanagisawa M (2005) Neuropeptide B-deficient mice demonstrate hyperalgesia in response to inflammatory pain. Proc Natl Acad Sci USA 102(28):9942–9947

    Article  PubMed  CAS  Google Scholar 

  33. Caceda R, Kinkead B, Nemeroff CB (2006) Neurotensin: role in psychiatric and neurological diseases. Peptides 27(10):2385–2404

    Article  PubMed  CAS  Google Scholar 

  34. Crawley JN (2008) Galanin impairs cognitive abilities in rodents: relevance to Alzheimer’s disease. Cell Mol Life Sci 65(12):1836–1841

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the Johannes and Frieda Marohn-Stiftung and the Fritz Thyssen-Stiftung to A.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winterpacht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endele, S., Nelkenbrecher, C., Bördlein, A. et al. C4ORF48, a gene from the Wolf-Hirschhorn syndrome critical region, encodes a putative neuropeptide and is expressed during neocortex and cerebellar development. Neurogenetics 12, 155–163 (2011). https://doi.org/10.1007/s10048-011-0275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-011-0275-8

Keywords

Navigation