Skip to main content
Log in

Atp10a, a gene adjacent to the PWS/AS gene cluster, is not imprinted in mouse and is insensitive to the PWS-IC

  • ORIGINAL ARTICLE
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Mutations affecting a cluster of coordinately regulated imprinted genes located at 15q11-q13 underlie both Prader–Willi syndrome (PWS) and Angelman syndrome (AS). Disruption of the predominately maternally expressed UBE3A locus is sufficient to meet diagnostic criteria for AS. However, AS patients with a deletion of the entire PWS/AS locus often have more severe traits than patients with point mutations in UBE3A suggesting that other genes contribute to the syndrome. ATP10A resides 200 kb telomeric to UBE3A and is of uncertain imprinted status. An initial report indicated bialleleic expression of the murine Atp10a in all tissues, but a subsequent report suggests that Atp10a is predominantly maternally expressed in the hippocampus and olfactory bulb. To resolve this discrepancy, we investigated Atp10a allelic expression in the brain, DNA methylation status, and sensitivity to mutations of the PWS imprinting center, an element required for imprinted gene expression in the region. We report that Atp10a is biallelically expressed in both the newborn and adult brain, and Atp10a allelic expression is insensitive to deletion or mutation of the PWS imprinting center. The CpG island associated with Atp10a is hypomethylated, a result consistent with the notion that Atp10a is not an imprinted gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holm VA, Cassidy SB, Butler MG et al (1993) Prader–Willi syndrome: consensus diagnostic criteria. Pediatrics 91:398–402

    CAS  PubMed  Google Scholar 

  2. Williams CA, Frias JL, Opitz JM (1982) The Angelman (“happy puppet”) syndrome. Am J Med Genet 11:453–460

    Article  CAS  PubMed  Google Scholar 

  3. Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15:70–73. doi:10.1038/ng0197-70

    Article  CAS  PubMed  Google Scholar 

  4. Matsuura T, Sutcliffe JS, Fang P et al (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15:74–77. doi:10.1038/ng0197-74

    Article  CAS  PubMed  Google Scholar 

  5. Lossie AC, Whitney MM, Amidon D et al (2001) Distinct phenotypes distinguish the molecular classes of Angelman syndrome. J Med Genet 38:834–845

    Article  CAS  PubMed  Google Scholar 

  6. Herzing LB, Kim SJ, Cook EH Jr, Ledbetter DH (2001) The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am J Hum Genet 68:1501–1505. doi:S0002-9297(07)61061-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Meguro M, Kashiwagi A, Mitsuya K et al (2001) A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nat Genet 28:19–20. doi:10.1038/8820988209 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Hogart A, Patzel KA, LaSalle JM (2008) Gender influences monoallelic expression of ATP10A in human brain. Hum Genet 124:235–242. doi:10.1007/s00439-008-0546-0

    Article  CAS  PubMed  Google Scholar 

  9. Cook EH Jr, Lindgren V, Leventhal BL et al (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60:928–934

    CAS  PubMed  Google Scholar 

  10. Dhar MS, Webb LS, Smith L, Hauser L, Johnson D, West DB (2000) A novel ATPase on mouse chromosome 7 is a candidate gene for increased body fat. Physiol Genomics 4:93–100

    CAS  PubMed  Google Scholar 

  11. Dhar MS, Sommardahl CS, Kirkland T et al (2004) Mice heterozygous for Atp10c, a putative amphipath, represent a novel model of obesity and type 2 diabetes. J Nutr 134:799–805

    CAS  PubMed  Google Scholar 

  12. Kayashima T, Yamasaki K, Joh K et al (2003) Atp10a, the mouse ortholog of the human imprinted ATP10A gene, escapes genomic imprinting. Genomics 81:644–647. doi:S0888754303000776 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Kashiwagi A, Meguro M, Hoshiya H et al (2003) Predominant maternal expression of the mouse Atp10c in hippocampus and olfactory bulb. J Hum Genet 48:194–198. doi:10.1007/s10038-003-0009-3

    Article  CAS  PubMed  Google Scholar 

  14. Kayashima T, Ohta T, Niikawa N, Kishino T (2003) On the conflicting reports of imprinting status of mouse ATP10a in the adult brain: strain-background-dependent imprinting? J Hum Genet 48:492–493. doi:10.1007/s10038-003-0061-z Author reply 494

    Article  PubMed  Google Scholar 

  15. Brannan CI, Bartolomei MS (1999) Mechanisms of genomic imprinting. Curr Opin Genet Dev 9:164–170. doi:S0959-437X(99)80025-2 [pii] 10.1016/S0959-437X(99)80025-2

    Article  CAS  PubMed  Google Scholar 

  16. Ohta T, Gray TA, Rogan PK et al (1999) Imprinting-mutation mechanisms in Prader–Willi syndrome. Am J Hum Genet 64:397–413. doi:S0002-9297(07)61746-7 [pii] 10.1086/302233

    Article  CAS  PubMed  Google Scholar 

  17. Farber C, Dittrich B, Buiting K, Horsthemke B (1999) The chromosome 15 imprinting centre (IC) region has undergone multiple duplication events and contains an upstream exon of SNRPN that is deleted in all Angelman syndrome patients with an IC microdeletion. Hum Mol Genet 8:337–343. doi:ddc040 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Yang T, Adamson TE, Resnick JL et al (1998) A mouse model for Prader–Willi syndrome imprinting-centre mutations. Nat Genet 19:25–31. doi:10.1038/ng0598-25

    Article  CAS  PubMed  Google Scholar 

  19. Johnstone KA, DuBose AJ, Futtner CR et al (2006) A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects. Hum Mol Genet 15:393–404. doi:ddi456 [pii] 10.1093/hmg/ddi456

    Article  CAS  PubMed  Google Scholar 

  20. Chamberlain SJ, Brannan CI (2001) The Prader–Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73:316–322. doi:10.1006/geno.2001.6543S0888-7543(01)96543-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucl. Acids Res 22:2990–2997. doi:10.1093/nar/22.15.2990

    Article  CAS  PubMed  Google Scholar 

  22. Albrecht U, Sutcliffe JS, Cattanach BM et al (1997) Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 17:75–78. doi:10.1038/ng0997-75

    Article  CAS  PubMed  Google Scholar 

  23. Rougeulle C, Cardoso C, Fontes M, Colleaux L, Lalande M (1998) An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 19:15–16. doi:10.1038/ng0598-15

    Article  CAS  PubMed  Google Scholar 

  24. Peery EG, Elmore MD, Resnick JL, Brannan CI, Johnstone KA (2007) A targeted deletion upstream of Snrpn does not result in an imprinting defect. Mamm Genome 18:255–262. doi:10.1007/s00335-007-9019-3

    Article  CAS  PubMed  Google Scholar 

  25. Landers M, Calciano MA, Colosi D et al (2005) Maternal disruption of Ube3a leads to increased expression of Ube3a-ATS in trans. Nucleic Acids Res 33:3976–3984. doi:33/13/3976 [pii] 10.1093/nar/gki705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Darragh Devine and K. Amy Chen for their help in conducting the brain dissection technique. This work was funded by National Institutes of Health grant HD037872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Resnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DuBose, A.J., Johnstone, K.A., Smith, E.Y. et al. Atp10a, a gene adjacent to the PWS/AS gene cluster, is not imprinted in mouse and is insensitive to the PWS-IC. Neurogenetics 11, 145–151 (2010). https://doi.org/10.1007/s10048-009-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-009-0226-9

Keywords

Navigation