Skip to main content
Log in

Analysis of Light Propagation in a Realistic Head Model by a Hybrid Method for Optical Brain Function Measurement

  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Near infrared spectroscopy (NIRS) is used to measure the change in blood volume and oxygenation in the brain cortex induced by functional brain activation. The development of an adequate model to calculate light propagation in the head is very important because the light is strongly scattered in the tissue and this causes ambiguity in the volume of tissue interrogated with a source–detector pair of the NIRS instrument. In this study, a two-dimensional realistic head model is generated from a MRI scan of a human adult head. The light propagation in the head model is calculated by the hybrid Monte Carlo–diffusion method to obtain the change in detected intensity caused by a focal absorption change in the grey matter or in the white matter to discuss the relationship between the depth of the activated region and the sensitivity of the NIRS signal. The sensitivity to the activated region in the white matter steeply decreases with an increase of the depth of the activated region because the spatial sensitivity profile is mainly confined to the grey matter. The contribution of the focal brain activity to the NIRS signal is determined by not only the depth of the activated region from the head surface but also the depth of the activated region from the brain surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope and D. T. Delpy: Anal. Biochem. 227 (1995) 54.

    CAS  PubMed  Google Scholar 

  2. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi and H. Koizumi: Med. Phys. 22 (1995) 1997.

    CAS  PubMed  Google Scholar 

  3. S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge and N. Tamaki: Physiol. Meas. 23 (2002) 301.

    PubMed  Google Scholar 

  4. H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki and R. Kennan: J. Biomed. Opt. 4 (1999) 403.

    Google Scholar 

  5. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota and J. B. Mandeville: Neurolmage 13 (2001) 76.

    CAS  Google Scholar 

  6. M. Firbank, S. R. Arridge, M. Schweiger and D. T. Delpy: Phys. Med. Biol. 41 (1996) 767.

    CAS  PubMed  Google Scholar 

  7. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope and D. T. Delpy: Appl. Opt. 36 (1997) 21.

    Google Scholar 

  8. E. Okada and D. T. Delpy: Appl. Opt. 42 (2003) 2906.

    PubMed  Google Scholar 

  9. S. R. Arridge and M. Schweiger: Appl. Opt. 34 (1995) 8026.

    Google Scholar 

  10. M. Firbank, E. Okada and D. T. Delpy: Neuroimage 8 (1998) 69.

    CAS  PubMed  Google Scholar 

  11. D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn: Opt. Express 10 (2002) 159.

    Google Scholar 

  12. Y. Fukui, Y. Ajichi and E. Okada: Appl. Opt. 42 (2003) 2881.

    PubMed  Google Scholar 

  13. T. Hayashi, Y. Kashio and E. Okada: Appl. Opt. 42 (2003) 2888.

    PubMed  Google Scholar 

  14. T. Hayashi, Y. Kashio and E. Okada: Opt. Rev. 10 (2003) 501.

    Google Scholar 

  15. C. R. Simpson, M. Kohl, M. Essenpreis and M. Cope: Phys. Med. Biol. 43 (1998) 2465.

    CAS  PubMed  Google Scholar 

  16. M. Firbank, M. Hiraoka, M. Essenpreis and D. T. Delpy: Phys. Med. Biol. 38 (1993) 503.

    CAS  PubMed  Google Scholar 

  17. P. van der Zee, M. Essenpreis and D. T. Delpy: Proc. SPIE 1888 (1993) 454.

    Google Scholar 

  18. S. R. Arridge, M. Schweiger, M. Hiraoka and D. T. Delpy: Med. Phys. 20 (1993) 299.

    CAS  PubMed  Google Scholar 

  19. S. R. Arridge, H. Dehghani. M. Schweiger and E. Okada: Med. Phys. 27 (2000) 252. .

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogoshi, Y., Okada, E. Analysis of Light Propagation in a Realistic Head Model by a Hybrid Method for Optical Brain Function Measurement. OPT REV 12, 264–269 (2005). https://doi.org/10.1007/s10043-005-0264-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-005-0264-y

Key words

Navigation