Skip to main content
Log in

Activated carbon/graphene composites with high-rate performance as electrode materials for electrochemical capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Glucose-derived activated carbon (GAC)/reduced graphene oxide (RGO) composites are prepared by pre-carbonization of the precursors (aqueous mixture of glucose and graphene oxide) and KOH activation of the pyrolysis products. The effect of the mass ratio of graphene oxide (GO) in the precursor on the electrochemical performance of GAC/RGO composites as electrode materials for electrochemical capacitors is investigated. It is found that the thermally reduced graphene oxide sheets serves as a wrinkled carrier to support the activated carbon particles after activation. The pore size distribution and surface area are depended on the mass ratio of GO. Besides, the rate capability of GAC is improved by the introduction of GO in the precursor. The highest specific capacitance of 334 F g−1 is achieved for the GAC/RGO composite prepared from the precursor with a GO mass ratio of 3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  3. Frackowiak E, Beguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  4. Zhai YP, Dou YQ, Zhao DY, Fulvio RF, Mayes RT, Dai S (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  5. Zhu YD, Hu HQ, Li WC, Zhang XY (2007) Carbon 45:160–165

    Article  CAS  Google Scholar 

  6. Li QY, Wang HQ, Dai QF, Yang JH, Zhong YL (2008) Solid State Ionics 179:269–273

    Article  CAS  Google Scholar 

  7. Wang HQ, Zhong YL, Qy L, Yang JH, Dai QF (2008) J Phys Chem Solids 69:2420–2425

    Article  CAS  Google Scholar 

  8. Zhao S, Wang CY, Chen MM, Wang J, Shi ZQ (2009) J Phys Chem Solids 70:1256–1260

    Article  CAS  Google Scholar 

  9. Chun SE, Picard YN, Whitacre JF (2011) J Electrochem Soc 158:A83–A92

    Article  CAS  Google Scholar 

  10. Wei L, Yushin G (2011) Carbon 49:4830–4838

    Article  CAS  Google Scholar 

  11. Wen ZB, Qu QT, Gao Q, Zheng XW, Hu ZH, Wu YP, Liu YF, Wang YJ (2009) Electrochem Commun 11:715–718

    Article  CAS  Google Scholar 

  12. Lee J, Yoon S, Hyeon T, Oh SM, Kim KB (1999) Chem Commun 21:2177–2178

    Article  Google Scholar 

  13. Yoon S, Lee LW, Hyeon T, Oh SM (2000) J Electrochem Soc 147:2507–2512

    Article  CAS  Google Scholar 

  14. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna TL (2006) Science 313:1760–1763

    Article  CAS  Google Scholar 

  15. Chen JH, Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF (2002) Carbon 40:1193–1197

    Article  CAS  Google Scholar 

  16. Frackowiak E, Beguin F (2002) Carbon 40:1775–1787

    Article  CAS  Google Scholar 

  17. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  18. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  19. Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu JS (2011) J Mater Chem 21:7302–7307

    Article  CAS  Google Scholar 

  20. Ahmadpour A, Do DD (1996) Carbon 34:471–479

    Article  CAS  Google Scholar 

  21. Lozano-Castello D, Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A (2001) Carbon 39:741–749

    Article  CAS  Google Scholar 

  22. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A (2003) Carbon 41:267–275

    Article  CAS  Google Scholar 

  23. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  24. Zhang K, Ang BT, Zhang LL, Zhao XS, Wu J (2011) J Mater Chem 21:2663–2670

    Article  CAS  Google Scholar 

  25. Chen Y, Zhang X, Zhang HT, Sun XZ, Zhang DC, Ma YW (2012) Rsc Adv 2:7747–7753

    Article  CAS  Google Scholar 

  26. Hummers WS, Offeman RE (1958) JACS 80:1339–1339

    Article  CAS  Google Scholar 

  27. Ahmadpour A, Do DD (1997) Carbon 35:1723–1732

    Article  CAS  Google Scholar 

  28. Wang Y, Alsmeyer DC, Mccreery RL (1990) Chem Mater 2:557–563

    Article  CAS  Google Scholar 

  29. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  30. Lee WH, Kim JY, Ko YK, Reucroft PJ, Zondlo JW (1999) Appl Surf Sci 141:107–113

    Article  CAS  Google Scholar 

  31. Lee WH, Reucroft PJ (1999) Carbon 37:7–14

    Article  CAS  Google Scholar 

  32. Hsieh CT, Teng H (2002) Carbon 40:667–674

    Article  CAS  Google Scholar 

  33. Lin R, Taberna PL, Chmiola J, Guay D, Gogotsi Y, Simon P (2009) J Electrochem Soc 156:A7–A12

    Article  CAS  Google Scholar 

  34. Huang HC, Zhang Q, Chou TC, Chen CM, Su DS, Doong RA (2012) Chemsuschem 5:563–571

    Article  CAS  Google Scholar 

  35. Bleda-Martinez MJ, Lozano-Castello D, Cazorla-Amoros D, Morallon E (2010) Energy Fuels 24:3378–3384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (51177156/E0712 and 21276045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwang Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Yan, J., Zhou, Y. et al. Activated carbon/graphene composites with high-rate performance as electrode materials for electrochemical capacitors. J Solid State Electrochem 17, 2949–2958 (2013). https://doi.org/10.1007/s10008-013-2217-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2217-x

Keywords

Navigation