Skip to main content

Advertisement

Log in

Optimising organic ionic plastic crystal electrolyte for all solid-state and higher than ambient temperature lithium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Organic ionic plastic crystal (OIPC) electrolytes are among the key enabling materials for solid-state and higher than ambient temperature lithium batteries. This work overviews some of the parameter studies on the Li|OIPC interface using lithium symmetrical cells as well as the optimisation and performance of Li|OIPC|LiFePO4 cells. The effects of temperature and electrolyte thickness on the cycle performance of the lithium symmetrical cell, particularly with respect to the interfacial and bulk resistances, are demonstrated. Whilst temperature change substantially alters both the interfacial and bulk resistance, changing the electrolyte thickness predominantly changes the bulk resistance only. In addition, an upper limit of the current density is demonstrated, above which irreversible processes related to electrolyte decomposition take place. Here, we demonstrate an excellent discharge capacity attained on LiFePO4|10 mol% LiNTf2-doped [C2mpyr][NTf2]|Li cell, reaching 126 mAh g-1 at 50 °C (when the electrolyte is in its solid form) and 153 mAh g-1 at 80 °C (when the electrolyte is in its liquid form). Most remarkably, at high temperature operation, the capacity retention at long cycles and high current is excellent with only a slight (3%) drop in discharge capacity upon increasing the current from 0.2 C to 0.5 C. These results highlight the real prospects for developing a lithium battery with high temperature performance that easily surpasses that achievable with even the best contemporary lithium-ion technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seki S, Ohno Y, Kobayashi Y, Miyashiro H, Usami A, Mita Y, Tokuda H, Watanabe M, Hayamizu K, Tsuzuki S, Hattori M, Terada N (2007) J Electrochem Soc 154:A173–A177

    Article  CAS  Google Scholar 

  2. Zhou Z-B, Matsumoto H (2007) Electrochem Commun 9:1017–1022

    Article  CAS  Google Scholar 

  3. Abouimrane A, Whitfield PS, Niketic S, Davidson IJ (2007) J Power Sources 174:883–888

    Article  CAS  Google Scholar 

  4. Abouimrane A, Abu-Lebdeh Y, Alarco P-J, Armand M (2004) J Electrochem Soc 151:A1028–A1031

    Article  CAS  Google Scholar 

  5. Alarco P-J, Abu-Lebdeh Y, Ravet N, Armand M (2004) Solid State Ionics 172:53–56

    Article  CAS  Google Scholar 

  6. Abu-Lebdeh Y, Abouimrane A, Alarco P-J, Armand M (2006) J Power Sources 154:255–261

    Article  CAS  Google Scholar 

  7. MacFarlane DR, Meakin P, Amini N, Forsyth M (2001) J Phys Condens Matter 13:8257–8267

    Article  CAS  Google Scholar 

  8. MacFarlane DR, Forsyth M (2001) Adv Mater 13:957–966

    Article  CAS  Google Scholar 

  9. Forsyth M, Huang JH, MacFarlane DR (2000) J Mater Chem 10:2259–2265

    Article  CAS  Google Scholar 

  10. MacFarlane DR, Huang J, Forsyth M (1999) Nature 402:792–794

    Article  CAS  Google Scholar 

  11. Annat G, Adebahr J, McKinnon IR, MacFarlane DR, Forsyth M (2007) Solid State Ionics 178:1065–1071

    Article  CAS  Google Scholar 

  12. Howlett PC, Shekibi Y, MacFarlane DR, Forsyth M (2009) Adv Eng Mater 11:1044–1048

    Article  CAS  Google Scholar 

  13. Howlett PC, Sunarso J, Shekibi Y, Wasser E, Jin L, Kar M, MacFarlane D, Forsyth M (2011) Solid State Ionics (submitted for publication)

  14. Armel V, Velayutham D, Sun J, Howlett PC, Forsyth M, MacFarlane DR, Pringle JM (2011) J Mater Chem 21:7640–7650

    Article  CAS  Google Scholar 

  15. MacFarlane D, Meakin P, Sun J, Amini N, Forsyth M (1999) J Phys Chem B 103:4164–4170

    Article  CAS  Google Scholar 

  16. Bhatt AI, Best AS, Huang J, Hollenkamp AF (2010) J Electrochem Soc 157:A66–A74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Australian Research Council (ARC) through the ARC Centre of Excellence for Electromaterials Science and ARC Laureate Fellowship for Maria Forsyth. Jaka Sunarso acknowledges Alfred Deakin Postdoctoral Research Fellowship from Deakin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Howlett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunarso, J., Shekibi, Y., Efthimiadis, J. et al. Optimising organic ionic plastic crystal electrolyte for all solid-state and higher than ambient temperature lithium batteries. J Solid State Electrochem 16, 1841–1848 (2012). https://doi.org/10.1007/s10008-011-1566-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1566-6

Keywords

Navigation