Skip to main content
Log in

Nickel surface anodic oxidation and electrocatalysis of oxygen evolution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The processes of nickel surface anodic oxidation taking place within the range of potentials preceding oxygen evolution reaction (OER) in the solutions of 1 M KOH, 0.5 M K2SO4, and 0.5 M H2SO4 have been analyzed in the present paper. Metallic nickel, thermally oxidized nickel, and black nickel coating were used as Ni electrodes. The methods of cyclic voltammetry and X-ray photoelectron spectroscopy were employed. The study was undertaken with a view to find the evidence of peroxide-type nickel surface compounds formation in the course of OER on the Ni electrode surface. On the basis of experimental results and literature data, it has been suggested that in alkaline solution at E ≈ 1.5 V (RHE) reversible electrochemical formation of Ni(IV) peroxide takes place according to the reaction as follows: \({\text{NiO}}\left( {{\text{OH}}} \right)_2 + 2{\text{OH}}^ - \Leftrightarrow {\text{NiOO}}_2 + 2{\text{H}}_2 {\text{O + 2e}}^ - .\) This reaction accounts for both the underpotential (with respect to \(E_{{{{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} } \mathord{\left/ {\vphantom {{{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} } {{\text{H}}_{\text{2}} {\text{O}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}}}}^0 = 1.77\;{\text{V}}\)) formation of O2 from NiOO2 peroxide and also small experimental values of dE/dlgi slope (<60 mV) at low anodic current densities, which are characteristic for the two-electron transfer process. It has been inferred that the composition of the γ-NiOOH phase, indicated in the Bode and revised Pourbaix diagrams, should be ∼5/6 NiOOH + ∼1/6 NiOO2. The schemes demonstrating potential-dependent transitions between Ni surface oxygen compounds are presented, and the electrocatalytic mechanisms of OER in alkaline, acid, and neutral medium have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trasatti S (1980) Electrodes of conductive metallic oxides, parts A, B. Elsevier, Amsterdam

    Google Scholar 

  2. Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397

    Article  CAS  Google Scholar 

  3. Krishtalik LI (1981) Electrochim Acta 26:329

    Article  CAS  Google Scholar 

  4. Shultze JW, Lohrengel MM (2000) Electrochim Acta 45:2499

    Article  Google Scholar 

  5. Jin S, Ye S (1996) Electrochim Acta 41:827

    Article  CAS  Google Scholar 

  6. Da Silva LA, Alves VA, Trasatti S, Boodts JFC (1997) J Electroanal Chem 427:97

    Article  Google Scholar 

  7. Wu G, Li N, Zhou D-R, Mitsuo K, Xu B-Q (2004) J Solid State Chem 177:3682

    Article  CAS  Google Scholar 

  8. Jirkovsky J, Markova M, Krtil P (2006) Electrochem Commun 8:1417

    Article  CAS  Google Scholar 

  9. Vazquez-Gomez L, Ferro S, De Battisti A (2006) Appl Catal B Environ 67:34

    Article  CAS  Google Scholar 

  10. Godinho MI, Catarino MA, Da Silva Pereira MI, Mendonca MH, Costa FM (2002) Electrochim Acta 47:4307

    Article  CAS  Google Scholar 

  11. Wang X, Luo H, Yang H, Sebastian PJ, Gamboa SA (2004) Int J Hydrogen Energy 29:967

    Article  CAS  Google Scholar 

  12. Chin B, Lin H, Li J, Wang N, Yang J (2006) Int J Hydrogen Energy 31:1210

    Article  Google Scholar 

  13. Aromaa J, Forsen O (2006) Electrohim Acta 51:6104

    Article  CAS  Google Scholar 

  14. Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K (1997) Mater Trans JIM 38:899

    CAS  Google Scholar 

  15. Corrigan DA (1987) J Electrochem Soc 134:377

    Article  CAS  Google Scholar 

  16. Corrigan DA, Bendert RM (1989) J Electrochem Soc 136:723

    Article  CAS  Google Scholar 

  17. Miller EL, Rocheleau RE (1997) J Electrochem Soc 144:1995

    Article  CAS  Google Scholar 

  18. Korovin NV, Kasatkin EV (1993) Russ Electrochem 29:448

    CAS  Google Scholar 

  19. Sattar MA, Conway BE (1969) Electrochim Acta 14:695

    Article  CAS  Google Scholar 

  20. Conway BE, Sattar MA, Gilroy D (1969) Electrochim Acta 14:677

    Article  CAS  Google Scholar 

  21. Hoare JP (1968) The electrochemistry of oxygen. Wiley, New York

    Google Scholar 

  22. Vetter KJ (1961) Elektrochemische kinetik. Springer, Berlin

    Google Scholar 

  23. Conway BE, Liu TC (1989) Mater Chem Phys 22:163

    Article  CAS  Google Scholar 

  24. Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Norskov JK (2007) J Electroanal Chem 607:83

    Article  CAS  Google Scholar 

  25. Podobaev AN, Reformatskaya II (2006) Prot Met 42:73

    Article  Google Scholar 

  26. Oliveira PP, Patrito EM, Sellers H (1994) Surf Sci 313:25

    Article  Google Scholar 

  27. Bockris JO’M, Otagawa TJ (1984) J Electrochem Soc 131:290

    Article  CAS  Google Scholar 

  28. Pourbaix M (1963) Atlas d’équilibres électrochimiques. Gauthier-Villars, Paris

    Google Scholar 

  29. Bronoel G, Reby J (1980) Electrochim Acta 25:973

    Article  CAS  Google Scholar 

  30. Kim M-S, Hwang T-S, Kim K-B (1997) J Electrochem Soc 144:1537

    Article  CAS  Google Scholar 

  31. Sac-Epee N, Palacin MR, Beaudoin B, Delahaye-Vidal A, Jamin T, Chabre Y, Tarascon J-M (1997) J Electrochem Soc 144:3896

    Article  CAS  Google Scholar 

  32. Lu PWT, Srinivasan S (1978) J Electrochem Soc 125:1416

    Article  CAS  Google Scholar 

  33. Corrigan DA, Knight SL (1989) J Electrocem Soc 136:613

    Article  CAS  Google Scholar 

  34. O’Grady WE, Pandya KI, Swider KE, Corrigan DA (1996) J Electrochem Soc 143:1613

    Article  CAS  Google Scholar 

  35. Seghiouer A, Chevalet J, Barhoun A, Lantelme F (1998) J Electroanal Chem 442:113

    Article  CAS  Google Scholar 

  36. Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) J Electroanal Chem 587:172

    Article  CAS  Google Scholar 

  37. Grden M, Klimek K (2005) J Electroanal Chem 581:122

    Article  CAS  Google Scholar 

  38. Beverskog B, Puigdomenech I (1997) Corros Sci 39:969

    Article  CAS  Google Scholar 

  39. Wherens-Dijksma M, Notten PHL (2006) Electrochim Acta 51:3609

    Article  Google Scholar 

  40. De Souza LMM, Kong FP, McLarnon FR, Muller RH (1997) Electrochim Acta 42:1253

    Article  Google Scholar 

  41. Brigs D, Seach MP (1987) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Mir, Moscow

    Google Scholar 

  42. Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) Handbook of X-ray photoelectron spectroscopy. Minnesota, Perkin-Elmer

    Google Scholar 

  43. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2000) NIST Standard Reference Database 20, Version 3.4 (Web Version)

  44. Barnard R, Randell CF, Tye FL (1980) J Appl Electrochem 10:109

    Article  CAS  Google Scholar 

  45. Barnard R, Randell CF (1982) J Appl Electrochem 12:27

    Google Scholar 

  46. Gregori J, Garcia-Jareno JJ, Gimenez-Romero D, Vicente F (2006) Electrochim Acta 52:658

    Article  CAS  Google Scholar 

  47. Krasilshchikov AI (1963) Zh Fiz Khim 37:531

    CAS  Google Scholar 

  48. Tsinman AI (1963) Zh Fiz Khim 37:273

    Google Scholar 

  49. Hodgman ChD, Lange NA (1928) Handbook of chemistry and physics, 13th edn. The Norwood Press, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Juodkazis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juodkazis, K., Juodkazytė, J., Vilkauskaitė, R. et al. Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J Solid State Electrochem 12, 1469–1479 (2008). https://doi.org/10.1007/s10008-007-0484-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0484-0

Keywords

Navigation