Skip to main content
Log in

[NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c 3

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract.

The primary and three-dimensional structures of a [NiFe] hydrogenase isolated from D. desulfuricans ATCC 27774 were determined, by nucleotide analysis and single-crystal X-ray crystallography. The three-dimensional structural model was refined to R=0.167 and R free=0.223 using data to 1.8 Å resolution. Two unique structural features are observed: the [4Fe-4S] cluster nearest the [NiFe] centre has been modified [4Fe-3S-3O] by loss of one sulfur atom and inclusion of three oxygen atoms; a three-fold disorder was observed for Cys536 which binds to the nickel atom in the [NiFe] centre. Also, the bridging sulfur atom that caps the active site was found to have partial occupancy, thus corresponding to a partly activated enzyme. These structural features may have biological relevance. In particular, the two less-populated rotamers of Cys536 may be involved in the activation process of the enzyme, as well as in the catalytic cycle. Molecular modelling studies were carried out on the interaction between this [NiFe] hydrogenase and its physiological partner, the tetrahaem cytochrome c 3 from the same organism. The lowest energy docking solutions were found to correspond to an interaction between the haem IV region in tetrahaem cytochrome c 3 with the distal [4Fe-4S] cluster in [NiFe] hydrogenase. This interaction should correspond to efficient electron transfer and be physiologically relevant, given the proximity of the two redox centres and the fact that electron transfer decay coupling calculations show high coupling values and a short electron transfer pathway. On the other hand, other docking solutions have been found that, despite showing low electron transfer efficiency, may give clues on possible proton transfer mechanisms between the two molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matias, P., Soares, C., Saraiva, L. et al. [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c 3 . J. Biol. Inorg. Chem. 6, 63–81 (2001). https://doi.org/10.1007/s007750000167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s007750000167

Navigation