Skip to main content
Log in

Stimulation and oxidative catalytic inactivation of thermolysin by copper•Cys-Gly-His-Lys

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

[Cu2+•Cys-Gly-His-Lys] stimulates thermolysin (TLN) activity at low concentration (below 10 μM) and inhibits the enzyme at higher concentration, with binding affinities of 2.0 and 4.9 μM, respectively. The metal-free Cys-Gly-His-Lys peptide also stimulates TLN activity, with an apparent binding affinity of 2.2 μM. Coordination of copper through deprotonated imine nitrogens, the histidyl nitrogen, and the free N-terminal amino group is consistent with the characteristic absorption spectrum of a Cu2+–amino-terminal copper and nickel binding motif (λ max ∼ 525 nm). The lack of thiol coordination is suggested by both the absence of a thiol to Cu2+ charge transfer band and electrochemical studies, since the electrode potential (vs. Ag/AgCl) 0.84 V (ΔE = 92 mV) for the Cu3+/2+ redox couple obtained for [Cu2+•Cys-Gly-His-Lys] was found to be in close agreement with that of a related complex [Cu2+•Lys-Gly-His-Lys]+ (0.84 V, ΔE = 114 mV). The N-terminal cysteine appears to be available as a zinc-anchoring residue and plays a critical functional role since the [Cu2+•Lys-Gly-His-Lys]+ homologue exhibits neither stimulation nor inhibition of TLN. Under oxidizing conditions (ascorbate/O2) the catalyst is shown to mediate the complete irreversible inactivation of TLN at concentrations where enzyme activity would otherwise be stimulated. The observed rate constant for inactivation of TLN activity was determined as k obs = 7.7 × 10−2 min−1, yielding a second-order rate constant of (7.7 ± 0.9) × 104 M−1 min−1. Copper peptide mediated generation of reactive oxygen species that subsequently modify active-site residues is the most likely pathway for inactivation of TLN rather than cleavage of the peptide backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Endo S (1962) Hakko Kogaku Zasshi 40:346–353

    CAS  Google Scholar 

  2. Latt SA, Holmquist B, Vallee BL (1969) Biochem Biophys Res Commun 37:333–339

    Article  PubMed  CAS  Google Scholar 

  3. Feder J, Garrett LR, Wildi BS (1971) Biochemistry 10:4552–4556

    Article  PubMed  CAS  Google Scholar 

  4. Roques BP, Noble F, Dauge V, Fournie-Zaluski M-C, Beaumont A (1993) Pharmacol Rev 45:87–146

    PubMed  CAS  Google Scholar 

  5. Cheng X-M, Ahn K, Haleen SJ (1997) Annu Rep Med Chem 32:61–70

    Article  CAS  Google Scholar 

  6. Wyvratt MJ, Patchett AA (1985) Med Res Rev 5:483–531

    Article  PubMed  CAS  Google Scholar 

  7. Roques BP (1993) Biochem Soc Trans 21:678–685

    PubMed  CAS  Google Scholar 

  8. Matthews BW (1988) Acc Chem Res 21:333–340

    Article  CAS  Google Scholar 

  9. Holmes MA, Matthews BW (1982) J Mol Biol 160:623–639

    Article  PubMed  CAS  Google Scholar 

  10. Tiraboschi G, Jullian N, Thery V, Antonczak S, Fournie-Zaluski MC, Roques BP (1999) Protein Eng 12:141–149

    Article  PubMed  CAS  Google Scholar 

  11. Bohacek R, De Lombaert S, McMartin C, Priestle J, Gruetter M (1996) J Am Chem Soc 118:8231–8249

    Article  CAS  Google Scholar 

  12. Fillion E, Gravel D (1996) Bioorg Med Chem Lett 6:2097–2102

    Article  CAS  Google Scholar 

  13. Gokhale NH, Cowan JA (2005) Chem Commun 5916–5918

  14. Gokhale NH, Cowan JA (2006) J Biol Inorg Chem 11:937–947

    Article  PubMed  CAS  Google Scholar 

  15. Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1977) Biochemistry 16:5484–5491

    Article  PubMed  CAS  Google Scholar 

  16. Gaucher JF, Selkti M, Tiraboschi G, Prange T, Roques BP, Tomas A, Fournie-Zaluski MC (1999) Biochemistry 38:12569–12576

    Article  PubMed  CAS  Google Scholar 

  17. Gomez-Monterrey I, Beaumont A, Nemecek P, Roques BP, Fournie-Zaluski M-C (1994) J Med Chem 37:1865–1873

    Article  PubMed  CAS  Google Scholar 

  18. Holmquist B, Vallee BL (1979) Proc Natl Acad Sci USA 76:6216–6220

    Article  PubMed  CAS  Google Scholar 

  19. Peters K, Jahreis G, Kotters E-M (2001) J Enzyme Inhib 16:339–350

    PubMed  CAS  Google Scholar 

  20. Roderick SL, Fournie-Zaluski MC, Roques BP, Matthews BW (1989) Biochemistry 28:1493–1497

    Article  PubMed  CAS  Google Scholar 

  21. Harford C, Sarkar B (1997) Acc Chem Res 30:123–130

    Article  CAS  Google Scholar 

  22. McDonald MR, Scheper WM, Lee HD, Margerum DW (1995) Inorg Chem 34:229–237

    Article  CAS  Google Scholar 

  23. Tesfai TM, Green BJ, Margerum DW (2004) Inorg Chem 43:6726–6733

    Article  PubMed  CAS  Google Scholar 

  24. Johnson GD, Ahn K (2000) Anal Biochem 286:112–118

    Article  PubMed  CAS  Google Scholar 

  25. Segel I (1993) Enzyme kinetics: behavior and analysis of rapid equilibium and steady-state enzyme systems. Wiley Interscience, New York

    Google Scholar 

  26. Suh J (2003) Acc Chem Res 36:562–570

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank the National Institutes of Health for financial support of this work (GM 63740) to J.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhale, N.H., Bradford, S. & Cowan, J.A. Stimulation and oxidative catalytic inactivation of thermolysin by copper•Cys-Gly-His-Lys. J Biol Inorg Chem 12, 981–987 (2007). https://doi.org/10.1007/s00775-007-0270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0270-6

Keywords

Navigation