Skip to main content
Log in

EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Calcium signaling, one of the most widespread signaling mechanisms in cells, is generally carried out by EF-hand proteins, characterized by a helix–loop–helix motif paired in functional domains. EF-hand proteins may be viewed as molecular switches activated by calcium concentration transients. The EF-hand structural database has grown to a point where meaningful inferences on the functional conformational rearrangements upon calcium binding can be made by comparing a fair number of pairs of end points, i.e., the structures of the apo and calcium-bound forms. More compact descriptors of the movement associated with calcium binding, in terms of principal component analysis of the six interhelical angles, have also become available. Dynamic information obtained by NMR, also with the aid of calcium substitution with paramagnetic lanthanides, is shedding light on the intrinsic amplitude of the conformational degrees of freedom sampled by the various members of the EF-hand superfamily, as well as on the time scales of the motions. Particularly, NMR of lanthanide derivatives helps in capturing long time scale motions. Both static and dynamic pictures reveal a large variety of behaviors. It is increasingly recognized that the EF-hand machinery has differentiated its behavior during evolution in several ways, e.g., by modifying one of the loops, by undergoing a further duplication after the initial motif duplication that originated the functional domain, or by acquiring the ability to dimerize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ast G (2005) Sci Am 292:40–47

    PubMed  Google Scholar 

  2. Spyracopoulos L, Lavigne P, Crump MP, Gagné SM, Kay CM, Sykes BD (2001) Biochemistry 40:12541–12551

    CAS  PubMed  Google Scholar 

  3. Lowey S, Waller GS, Trybus KM (1993) Nature 365:454–456

    CAS  PubMed  Google Scholar 

  4. Marenholz I, Heizmann CW, Fritz G (2004) Biochem Biophys Res Commun 322:1111–1122

    CAS  PubMed  Google Scholar 

  5. Hoeflich KP, Ikura M (2002) Cell 108:739–742

    CAS  PubMed  Google Scholar 

  6. Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H (2002) Biochem Biophys Acta 1600:51–60

    CAS  PubMed  Google Scholar 

  7. Pauls TL, Cox JA, Berchtold MW (1996) Biochem Biophys Acta 1306:39–54

    PubMed  Google Scholar 

  8. Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Proc Natl Acad Sci USA 97:13372–13377

    CAS  PubMed  Google Scholar 

  9. Skelton NJ, Kordel J, Akke M, Forsen S, Chazin WJ (1994) Nat Struct Biol 1:239–245

    CAS  PubMed  Google Scholar 

  10. Ikura M (1996) Trends Biochem Sci 21:14–17

    CAS  PubMed  Google Scholar 

  11. Kawasaki H, Nakayama S, Kretsinger RH (1998) Biometals 11:277–295

    CAS  PubMed  Google Scholar 

  12. Baba ML, Goodman M, Berger-Cohn J, Demaille JG, Matsuda G (1984) Mol Biol Evol 1:442–455

    CAS  PubMed  Google Scholar 

  13. Linse S, Chazin WJ (1995) Protein Sci 4:1038–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Forsen S, Linse S, Drakenberg T, Kordel J, Akke M, Sellers P, Johansson C, Thulin E, Andersson I, Brodin P (1991) Ciba Found Symp 161:222–236

    CAS  PubMed  Google Scholar 

  15. Waltersson Y, Linse S, Brodin P, Grundstrom T (1993) Biochemistry 32:7866–7871

    CAS  PubMed  Google Scholar 

  16. Bhattacharya S, Bunick CG, Chazin WJ (2004) Biochem Biophys Acta 1742:69–79

    CAS  PubMed  Google Scholar 

  17. Marsden BJ, Shaw GS, Sykes BD (1990) Biochem Cell Biol 68:587–601

    CAS  PubMed  Google Scholar 

  18. Forsén S, Kördel J (1994) Calcium in biological systems. In: Bertini I, Gray HB, Lippard SJ, Selverstone Valentine J (eds) Bioinorganic chemistry, chap 3. University Science Books, Mill Valley, p 107

  19. Lide DR (ed) (1995) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 76 edn. CRC, Boca Raton

  20. Babu YS, Bugg CE, Cook WJ (1988) J Mol Biol 204:191–204

    CAS  PubMed  Google Scholar 

  21. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA (1992) J Mol Biol 228:1177–1192

    CAS  PubMed  Google Scholar 

  22. Trewhella J, Blumenthal DK, Rokop SE, Seeger PA (1990) Biochemistry 29:9316–9324

    CAS  PubMed  Google Scholar 

  23. Small EW, Anderson SR (1988) Biochemistry 27:419–428

    CAS  PubMed  Google Scholar 

  24. Chapman ER, Alexander K, Vorherr T, Carafoli E, Storm DR (1992) Biochemistry 31:12819–12825

    CAS  PubMed  Google Scholar 

  25. Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Biochemistry 31:5269–5278

    CAS  PubMed  Google Scholar 

  26. Tjandra N, Kuboniwa H, Ren H, Bax A (1995) Eur J Biochem 230:1014–1024

    CAS  PubMed  Google Scholar 

  27. Persechini A, Kretsinger RH (1988) J Biol Chem 263:12175–12178

    CAS  PubMed  Google Scholar 

  28. Nelson MR, Chazin WJ (1998) Biometals 11:297–318

    CAS  PubMed  Google Scholar 

  29. Burgoyne D (2004) Biochem Biophys Acta 1742:59–68

    CAS  Google Scholar 

  30. Evenas J, Malmendal A, Thulin E, Carlstrom G, Forsén S (1998) Biochemistry 37:13744–13754

    CAS  PubMed  Google Scholar 

  31. Evenas J, Forsén S, Malmendal A, Akke M (1999) J Mol Biol 289:603–617

    CAS  PubMed  Google Scholar 

  32. Meador WE, Means AR, Quiocho FA (1992) Science 257:1251–1255

    CAS  PubMed  Google Scholar 

  33. Houdusse A, Silver M, Cohen C (1996) Structure 4:1475–1490

    CAS  PubMed  Google Scholar 

  34. Takeda S, Yamashita A, Maeda K, Maeda Y (2003) Nature 424:35–41

    CAS  PubMed  Google Scholar 

  35. Matsubara M, Nakatsu T, Kato H, Taniguchi H (2004) EMBO J 23:712–718

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rety S, Sopkova J, Renouard M, Osterloh D, Gerke V, Tabaries S, Marie F, Lewit-Bentley A (1999) Nat Struct Biol 6:89–95

    CAS  PubMed  Google Scholar 

  37. Bhattacharya S, Large E, Heizmann CW, Hemmings BA, Chazin WJ (2003) Biochemistry 42:14416–14426

    CAS  PubMed  Google Scholar 

  38. Nelson MR, Chazin WJ (1998) Protein Sci 7:270–282

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yap KL, Ames JB, Swindells MB, Ikura M (1999) Proteins 37:499–507

    CAS  PubMed  Google Scholar 

  40. Akke M, Chazin WJ (2001) Nat Struct Biol 8:910–912

    CAS  PubMed  Google Scholar 

  41. Yap KL, Ames JB, Swindells MB, Ikura M (2002) Methods Mol Biol 173:317–324

    CAS  PubMed  Google Scholar 

  42. Harris NL, Presnell SR, Cohen FE (1994) J Mol Biol 236:1356–1368

    CAS  PubMed  Google Scholar 

  43. Zhang M, Tanaka T, Ikura M (1995) Nat Struct Biol 2:758–767

    CAS  PubMed  Google Scholar 

  44. Smith SP, Shaw GS (1998) Biochem Cell Biol 76:324–333

    CAS  PubMed  Google Scholar 

  45. Babini E, Bertini I, Capozzi F, Luchinat C, Quattrone A, Turano M (2005) J Proteome Res 4:1961–1971

    CAS  PubMed  Google Scholar 

  46. Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Gyorgyi AG, Cohen C (1994) Nature 368:306–312

    CAS  PubMed  Google Scholar 

  47. Houdusse A, Cohen C (1996) Structure 4:21–32

    CAS  PubMed  Google Scholar 

  48. Finn BE, Evenas J, Drakenberg T, Waltho JP, Thulin E, Forsen S (1995) Nat Struct Mol Biol 2:777–783

    CAS  Google Scholar 

  49. Gagné SM, Li MX, McKay RT, Sykes BD (1998) Biochem Cell Biol 76:302–312

    PubMed  Google Scholar 

  50. Chou JJ, Li S, Klee CB, Bax A (2001) Nat Struct Biol 8:990–997

    CAS  PubMed  Google Scholar 

  51. Bax A (2003) Protein Sci 12:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee L, Sykes BD (1980) Biophys J 32:193–210

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Horrocks WD, Sudnick DR (1981) Acc Chem Res 14:384–392

    CAS  Google Scholar 

  54. Capozzi F, Cremonini MA, Luchinat C, Sola M (1993) Magn Reson Chem 31:S118–S127

    CAS  Google Scholar 

  55. Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thogersen HC, Nyborg J, Kjeldgaard M (1998) Structure 6:477–489

    CAS  PubMed  Google Scholar 

  56. Bertini I, Lee YM, Luchinat C, Piccioli M, Poggi L (2001) Chem Bio Chem 2:550–558

    CAS  PubMed  Google Scholar 

  57. Pidcock E, Moore G (2001) J Biol Inorg Chem 6:479–489

    CAS  PubMed  Google Scholar 

  58. Bertini I, Donaire A, Luchinat C, Rosato A (1997) Proteins 29:348–358

    CAS  PubMed  Google Scholar 

  59. Allegrozzi M, Bertini I, Janik MBL, Lee YM, Lin GH, Luchinat C (2000) J Am Chem Soc 122:4154–4161

    CAS  Google Scholar 

  60. Bertini I, Janik MB, Lee YM, Luchinat C, Rosato A (2001) J Am Chem Soc 123:4181–4188

    CAS  PubMed  Google Scholar 

  61. Barbieri R, Bertini I, Cavallaro G, Lee YM, Luchinat C, Rosato A (2002) J Am Chem Soc 124:5581–5587

    CAS  PubMed  Google Scholar 

  62. Bertini I, Gelis I, Katsaros N, Luchinat C, Provenzani A (2003) Biochemistry 42:8011–8021

    CAS  PubMed  Google Scholar 

  63. Bentrop D, Bertini I, Cremonini MA, Forsén S, Luchinat C, Malmendal A (1997) Biochemistry 36:11605–11618

    CAS  PubMed  Google Scholar 

  64. Evenas J, Thulin E, Malmendal A, Forsén S, Carlstrom G (1997) Biochemistry 36:3448–3457

    CAS  PubMed  Google Scholar 

  65. Lipari G, Szabo A (1982) J Am Chem Soc 104:4546–4559

    CAS  Google Scholar 

  66. Lipari G, Szabo A (1982) J Am Chem Soc 104:4559–4570

    CAS  Google Scholar 

  67. Ishima R, Torchia DA (2000) Nat Struct Biol 7:740–743

    CAS  PubMed  Google Scholar 

  68. Huang YJ, Montelione GT (2005) Nature 438:36–37

    CAS  PubMed  Google Scholar 

  69. Kay LE (1998) Nat Struct Biol 5(Suppl):513–517

    CAS  PubMed  Google Scholar 

  70. Malmendal A, Evenas J, Forsén S, Akke M (1999) J Mol Biol 293:883–899

    CAS  PubMed  Google Scholar 

  71. Gagné SM, Li MX, Sykes BD (1997) Biochemistry 36:4386–4392

    PubMed  Google Scholar 

  72. Maler L, Blankenship J, Rance M, Chazin WJ (2000) Nat Struct Mol Biol 7:245–250

    CAS  Google Scholar 

  73. Kern D, Zuiderweg ER (2003) Curr Opin Struct Biol 13:748–757

    CAS  PubMed  Google Scholar 

  74. Baig I, Bertini I, Del Bianco C, Gupta YK, Lee YM, Luchinat C, Quattrone A (2004) Biochemistry 43:5562–5573

    CAS  PubMed  Google Scholar 

  75. Babini E, Bertini I, Capozzi F, Del Bianco C, Hollender D, Kiss T, Luchinat C, Quattrone A (2004) Biochemistry 43:16076–16085

    CAS  PubMed  Google Scholar 

  76. Goodman M, Pechere JF, Haiech J, Demaille JG (1979) J Mol Evol 13:331–352

    CAS  PubMed  Google Scholar 

  77. Emori Y, Ohno S, Tobita M, Suzuki K (1986) FEBS Lett 194:249–252

    CAS  PubMed  Google Scholar 

  78. Moncrief ND, Kretsinger RH, Goodman M (1990) J Mol Evol 30:522–562

    CAS  PubMed  Google Scholar 

  79. Grabarek Z (2006) J Mol Biol 359:509–525

    CAS  PubMed  Google Scholar 

  80. Wu X, Reid RE (1997) Biochemistry 36:8649–8656

    CAS  PubMed  Google Scholar 

  81. Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN Jr (1999) Structure 7:1269–1278

    CAS  PubMed  Google Scholar 

  82. Black DJ, Tikunova SB, Johnson JD, Davis JP (2000) Biochemistry 39:13831–13837

    CAS  PubMed  Google Scholar 

  83. Slupsky CM, Sykes BD (1995) Biochemistry 34:15953–15964

    CAS  PubMed  Google Scholar 

  84. Nojima H (1987) FEBS Lett 217:187–190

    CAS  PubMed  Google Scholar 

  85. Lee AL, Kinnear SA, Wand AJ (2000) Nat Struct Biol 7:72–77

    CAS  PubMed  Google Scholar 

  86. Heidorn DB, Trewhella J (1988) Biochemistry 27:909–915

    CAS  PubMed  Google Scholar 

  87. Baber JL, Szabo A, Tjandra N (2001) J Am Chem Soc 123:3953–3959

    CAS  PubMed  Google Scholar 

  88. Sorensen BR, Shea MA (1998) Biochemistry 37:4244–4253

    CAS  PubMed  Google Scholar 

  89. Jaren OR, Kranz JK, Sorensen BR, Wand AJ, Shea MA (2002) Biochemistry 41:14158–14166

    CAS  PubMed  Google Scholar 

  90. Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) J Struct Funct Genom 1:8–14

    CAS  Google Scholar 

  91. Mal TK, Skrynnikov NR, Yap KL, Kay LE, Ikura M (2002) Biochemistry 41:12899–12906

    CAS  PubMed  Google Scholar 

  92. Tjandra N, Bax A (1997) Science 278:1111–1114

    CAS  PubMed  Google Scholar 

  93. Hansen MR, Mueller L, Pardi A (1998) Nat Struct Biol 5:1065–1074

    CAS  PubMed  Google Scholar 

  94. Vetter SW, Leclerc E (2003) Eur J Biochem 270:404–414

    CAS  PubMed  Google Scholar 

  95. Contessa GM, Orsale M, Melino S, Torre V, Paci M, Desideri A, Cicero DO (2005) J Biomol NMR 31:185–199

    CAS  PubMed  Google Scholar 

  96. Elshorst B, Hennig M, Forsterling H, Diener A, Maurer M, Schulte P, Schwalbe H, Griesinger C, Krebs J, Schmid H, Vorherr T, Carafoli E (1999) Biochemistry 38:12320–12332

    CAS  PubMed  Google Scholar 

  97. Christodoulou J, Malmendal A, Harper JF, Chazin WJ (2004) J Biol Chem 279:29092–29100

    CAS  PubMed  Google Scholar 

  98. Weljie AM, Vogel HJ (2004) J Biol Chem 279:35494–35502

    CAS  PubMed  Google Scholar 

  99. Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2005) J Mol Biol 357:400–410

    PubMed  Google Scholar 

  100. Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (2002) Nature 415:396–402

    CAS  PubMed  Google Scholar 

  101. Schumacher MA, Rivard AF, Bachinger HP, Adelman JP (2001) Nature 410:1120–1124

    CAS  PubMed  Google Scholar 

  102. Wang T, Frederick KK, Igumenova TI, Wand AJ, Zuiderweg ER (2005) J Am Chem Soc 127:828–829

    CAS  PubMed  Google Scholar 

  103. Bertini I, Del BC, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Proc Natl Acad Sci USA 101:6841–6846

    CAS  PubMed  Google Scholar 

  104. Kretsinger RH, Nockolds CE (1973) J Biol Chem 248:3313–3326

    CAS  PubMed  Google Scholar 

  105. Koradi R, Billeter M, Wuthrich K (1996) J Mol Graph 14:51–32

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ivano Bertini for critically reading the manuscript. Several discussions with Alessandro Quattrone and Maria Turano are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Luchinat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capozzi, F., Casadei, F. & Luchinat, C. EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. J Biol Inorg Chem 11, 949–962 (2006). https://doi.org/10.1007/s00775-006-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0163-0

Keywords

Navigation