Skip to main content
Log in

γ-Glutamyl 16-diaminopropane derivative of vasoactive intestinal peptide: a potent anti-oxidative agent for human epidermoid cancer cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

We previously demonstrated that the γ-glutamyl 16 amine derivative of vasoactive intestinal peptide (VIP) acts as structural VIP agonist with affinity and potency higher than VIP. Herein, we have evaluated the effects of VIP and γ-Gln16-diaminopropane derivative of VIP (VIP-DAP3) on the proliferation and protection from oxidative stress induced by hydrogen peroxide (H2O2) on epidermoid carcinoma cell lines. We have found that 10−11 M VIP-DAP3 completely antagonized the inhibition induced by H2O2 on both cell proliferation and S-phase distribution while these effects were only partially antagonized by equimolar concentrations of VIP. Moreover, both oxidative stress and intracellular lipid oxidation induced by H2O2 were reduced by VIP and completely antagonized by VIP-DAP3. Thereafter, we have found that H2O2 increased p38 kinase activity and both HSP70 and HSP27 expression. VIP and VIP-DAP3 again antagonized these effects partially or totally, respectively. H2O2 reduced the activity of extracellular signal-regulated kinases Erk-1/2 and Akt, signalling proteins involved in proliferation/survival pathways. Again VIP restored the activity of both kinases while VIP-DAP3 caused indeed an increase of their activity as compared to untreated cells. These data suggest that VIP-DAP3 has a stronger anti-oxidative activity as compared to VIP likely based on its super-agonistic binding on the putative receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle medium

RPMI:

Roswell Park Memorial Institute medium

KB:

Human oropharyngeal epidermoid carcinoma

H1355:

Lung epidermoid NSCLC

Dap:

1,3-Diaminopropane

NO:

Nitric oxide

PACAP:

Pituitary adenylate cyclase-activating peptide

Pt:

Put rescine

Spd:

Spermidine

Spm:

Spermine

TGase:

Transglutaminase

VIP:

Vasoactive intestinal peptide

VPAC1:

V IP/PACAP1 receptor

VPAC2:

V IP/PACAP2 receptor

VIP-DAP:

γ-Glutamyl l6-diaminopropane derivative of vasoactive intestinal peptide

RP-HPLC:

Reverse-phase HPLC

SOD:

Superoxide dismutase

GPX:

Glutathione peroxidase

p38 MAPK:

p38 mitogen-activated protein kinases

SAPK/JNK:

Stress-activated protein kinase/c-Jun NH2-terminal kinase

AKT:

Serine/threonine kinase

GSK-3:

Glycogen synthase kinase

HE:

Hydroethidine

References

  • Cameron AR, Johnston CF, Kirkpatrick CT, Kirkpatrick MC (1983) The quest for the inhibitory neurotransmitter in bovine tracheal smooth muscle. J Exp Physiol 68:413–426

    CAS  Google Scholar 

  • Caraglia M, Dicitore A, Giuberti G, Cassese D, Lepretti M, Cartenì M, Abbruzzese A, Stiuso P (2006) Effects of VIP and VIP-DAP on proliferation and lipid peroxidation metabolism in human KB cells. Ann N Y Acad Sci 1070:167–172

    Article  CAS  PubMed  Google Scholar 

  • Caraglia M, Carteni M, Dicitore A, Cassese D, De Maria S, Ferranti P, Giuberti G, Abbruzzese A, Stiuso P (2008) Experimental study on vasoactive intestinal peptide (VIP) and its diaminopropane bound (VIP-DAP) analog in solution. Amino Acids 35(2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Coles SJ, Said SI, Reid ML (1981) Inhibition by vasoactive intestinal peptide of glycoconjugate and lysozyme secretion by human airways in vitro. Am Rev Respir Dis 124:531–536

    CAS  PubMed  Google Scholar 

  • Cooke HJ (2000) Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci 915:77–80

    Article  CAS  PubMed  Google Scholar 

  • De Maria S, Metafora S, Metafora V, Morelli F, Robberecht P, Waelbroeck M, Stiuso P, De Rosa A, Cozzolino A, Esposito C, Facchiano A, Cartenì M (2002) Transglutaminase-mediated polyamination of vasoactive intestinal peptide (VIP) Gln16 residue modulates VIP/PACAP receptor activity. Eur J Biochem 269:3211–3219

    Article  PubMed  CAS  Google Scholar 

  • Delgado M (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia. Biochem Biophys Res Commun 293(2):771–776

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Abad C, Martinez C, Juarranz MG, Arranz A, Gomariz RP, Leceta J (2002) Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med 80:16–24

    Article  CAS  PubMed  Google Scholar 

  • Gourlet P, Vilardaga JP, De Neef P, Waelbroeck M, Vandermeers A, Robberecht P (1996) The C-terminus ends of secretin and VIP interact with the N-terminal domains of their receptors. Peptides 17:825–829

    Article  CAS  PubMed  Google Scholar 

  • Groneberg DA, Springer J, Fischer A (2001) Vasoactive intestinal polypeptide as mediator of asthma. Pulm Pharmacol Ther 14:391–401

    Article  CAS  PubMed  Google Scholar 

  • Holtmann MH, Hadac EM, Miller L (1995) Critical contributions of amino-terminal extracellular domains in agonist binding and activation of secretin and vasoactive intestinal polypeptide receptors. Studies of chimeric receptors. J Biol Chem 270(24):14394–14398

    Article  CAS  PubMed  Google Scholar 

  • Inanami O, Ohta T, Ito S, Kuwabara M (1999) Elevation of intracellular calcium ions is essential for the H2O2-induced activation of SAPK/JNK but not for that of p38 and ERK in Chinese hamster V79 cells. Antiox Redox Signal 1:501–508

    Article  CAS  Google Scholar 

  • Ishioka C, Yoshida A, Kimata H, Mikawa H (1992) Vasoactive intestinal peptide stimulates immunoglobulin production and growth of human B cells. Clin Exp Immunol 87:504–508

    CAS  PubMed  Google Scholar 

  • Journot L, Villalba M, Bockaert J (1998) PACAP-38 protects cerebellar granule cells from apoptosis. Ann N Y Acad Sci 11865:100–110

    Article  Google Scholar 

  • Koh SW, Waschek JA (2000) Corneal endothelial cell survival in organ cultures under acute oxidative stress: effect of VIP. Invest Ophthalmol Vis Sci 41:4085–4092

    CAS  PubMed  Google Scholar 

  • Kuwabara M, Asanuma T, Niwa K, Inanami O (2008) Regulation of cell survival and death signals induced by oxidative stress. J Clin Biochem Nutr 43(2):51–57

    Article  CAS  PubMed  Google Scholar 

  • Martin SC, Shuttleworth TJ (1996) The control of fluid-secreting epithelia by VIP. Ann N Y Acad Sci 805:133–147

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki Y, Hamasaki Y, Said SI (1980) Vasoactive intestinal peptide: a possible transmitter of nonadrenergic relaxation of guinea pig airways. Science 210:1252–1253

    Article  CAS  PubMed  Google Scholar 

  • Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, Couvineau A, Martinez J, Brasseur R, Laburthe M (2000) Identification of key residuesfor interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 275:24003–24012

    Article  CAS  PubMed  Google Scholar 

  • Niwa K, Inanami O, Yamamori T, Ohta T, Hamasu T, Kuwabara M (2003) Redox regulation of PI3K/Akt and p53 in bovine endothelial cells exposed to hydrogen peroxide. Antiox Redox Signal 5:713–722

    Article  CAS  Google Scholar 

  • Nussdorfer GG, Bahcelioglu M, Neri G, Malendowicz LK (2000) Distribution, functional role, and signaling mechanism of adrenomedullin receptors in the rat adrenal gland. Peptides 21:309–324

    Article  CAS  PubMed  Google Scholar 

  • Onoue S, Matsumoto A, Nagano Y, Ohshima K, Ohmori Y, Yamada S, Kimura R, Yajima T, Kashimoto K (2004) Alpha-helical structure in the C-terminus of vasoactive intestinal peptide: functional and structural consequences. Eur J Pharmacol 485:307–316

    Article  CAS  PubMed  Google Scholar 

  • Saga T, Said SI (1984) Vasoactive intestinal peptide relaxes isolated strips of human bronchus, pulmonary artery, and lung parenchyma. Trans Assoc Am Phys 97:304–310

    CAS  PubMed  Google Scholar 

  • Said SI (1991) VIP as a modulator of lung inflammation and airway constriction. Am Rev Respir Dis 143:S22–S24

    CAS  PubMed  Google Scholar 

  • Sherwood NM, Krueckl SL, Mcrory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21(6):619–670

    Article  CAS  PubMed  Google Scholar 

  • Shoge K, Mishima HK, Saitoh T, Ishihara K, Tamura Y, Shiomi H, Sasa M (1998) Protective effects of vasoactive intestinal peptide against delayed glutamate neurotoxicity in cultured retina. Brain Res 809:127–136

    Article  CAS  PubMed  Google Scholar 

  • Sirangelo I, Iannuzzi C, Vilasi S, Irace G, Giuberti G, Misso G, D’Alessandro A, Abbruzzese A, Caraglia M (2009) W7FW14F apomyoglobin amyloid aggregates-mediated apoptosis is due to oxidative stress and Akt inactivation caused by Ras and Rac. J Cell Physiol 221(2):412–423

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Inanami O, Kuwabara M (2000) Neuroprotective effect of α-phenyl-N-tert-butylnitrone in gerbil hippocampus is mediated by the mitogen-activated protein kinase pathway and heat shock proteins. Neurosci Lett 282:41–44

    Article  CAS  PubMed  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Caraglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiuso, P., Giuberti, G., Lombardi, A. et al. γ-Glutamyl 16-diaminopropane derivative of vasoactive intestinal peptide: a potent anti-oxidative agent for human epidermoid cancer cells. Amino Acids 39, 661–670 (2010). https://doi.org/10.1007/s00726-010-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0487-5

Keywords

Navigation