Skip to main content

Advertisement

Log in

Iron isotope compositions of carbonatites record melt generation, crystallization, and late-stage volatile-transport processes

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Carbonatites define the largest range in Fe isotope compositions yet measured for igneous rocks, recording significant isotopic fractionations between carbonate, oxide, and silicate minerals during generation in the mantle and subsequent differentiation. In contrast to the relatively restricted range in δ56Fe values for mantle-derived basaltic magmas (δ56Fe = 0.0 ± 0.1‰), calcite from carbonatites have δ56Fe values between −1.0 and +0.8‰, similar to the range defined by whole-rock samples of carbonatites. Based on expected carbonate-silicate fractionation factors at igneous or mantle temperatures, carbonatite magmas that have modestly negative δ56Fe values of ~ −0.3‰ or lower can be explained by equilibrium with a silicate mantle. More negative δ56Fe values were probably produced by differentiation processes, including crystal fractionation and liquid immiscibility. Positive δ56Fe values for carbonatites are, however, unexpected, and such values seem to likely reflect interaction between low-Fe carbonates and Fe3+-rich fluids at igneous or near-igneous temperatures; the expected δ56Fe values for Fe2+-bearing fluids are too low to produced the observed positive δ56Fe values of some carbonatites, indicating that Fe isotopes may be a valuable tracer of redox conditions in carbonatite complexes. Further evidence for fluid-rock or fluid-magma interactions comes from the common occurrence of Fe isotope disequilibrium among carbonate, oxide, silicate, and sulfide minerals in the majority of the carbonatites studied. The common occurrence of Fe isotope disequilibrium among minerals in carbonatites may also indicate mixing of phenocyrsts from distinct magmas. Expulsion of Fe3+-rich brines into metasomatic aureols that surround carbonatite complexes are expected to produce high-δ56Fe fenites, but this has yet to be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albarède F, Beard B (2004) Analytical methods for non-traditional isotopes. In: Geochemistry of non-traditional stable isotopes, vol 55. pp 113–152

  • Anbar AD, Jarzecki AA, Spiro TG (2005) Theoretical investigation of iron isotope fractionation between Fe(H2O) 63+ and Fe(H2O) 2+6 : implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837

    Article  Google Scholar 

  • Andersen T (1986) Magmatic fluids in the Fen carbonatite complex, S.E. Norway: evidence of mid-crustal fractionation from solid and fluid inclusions in apatite. Contrib Mineral Petrol 93:491–503

    Article  Google Scholar 

  • Andersen T (1989) Carbonatite-related contact metasomatism in the Fen Complex, Norway: effects and petrogenetic implications. Min Mag 53:395–414

    Article  Google Scholar 

  • Andersen T, Austrheim H (1991) Temperature-HF fugacity trends during crystallization of calcite carbonatite magma in the Fen complex, Norway. Min Mag 55:81–94

    Article  Google Scholar 

  • Bailey DK (1993) Petrogenetic implications of the timing of alkaline, carbonatite, and kimberlite igneous activity in Africa. S African Jour Geol 96:67–74

    Google Scholar 

  • Beard BL, Johnson CM (2004a) Fe isotope variations in the modern and ancient earth and other planetary bodies. In: Geochemistry of non-traditional stable isotopes, vol 55. pp 319–357

  • Beard BL, Johnson CM (2004b) Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochim Cosmochim Acta 68(22):4727–4743

    Article  Google Scholar 

  • Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195(1–4):87–117

    Article  Google Scholar 

  • Bell K, Dawson JB (1995) Nd and Sr isotope systematics of the active carbonatite volcano, Oldoinyo Lengai. In: Bell K, Keller J (eds) In carbonatite volcanism: proceedings in volcanology, vol 4. IAVCEI, pp 1000–1012

  • Bell K, Rukhlov AS (2004) Carbonatites from the Kola Alkaline province: origin, evolution and source characteristics. In: Zaitsev A, Wall F (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, vol 10. Mineralogical Society Series, London, pp 421–455

    Google Scholar 

  • Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. Jour Petrol 37:1321–1339

    Article  Google Scholar 

  • Bell K, Simonetti A (2009) Source of parental melts to carbonatites—critical isotopic constraints. Min Pet. doi:10.1007/s00710-009-0059-0

  • Bell K, Tilton GR (2001) Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. Jour Petrol 42:1927–1945

    Article  Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson RK, Kurszlaukis S (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS. Geochim Cosmochim Acta 67:289–302

    Article  Google Scholar 

  • Brögger WC (1921) Die Eruptivegesteine des Kristianiagebietes. IV. Das Fengebiet in Telemark, Norwegen. Skrifter udgit av denskabsselskabet i Kristiania. I Math-Nat Klass 9:1–408

    Google Scholar 

  • Brooker RA (1998) The effect of CO2 saturation on immiscibility between silcate and carbonate liquids: an experimental study. Jour Petrol 39:1905–1915

    Article  Google Scholar 

  • Bühn B, Rankin AH (1999) Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions. Geochim Cosmochim Acta 63:3781–3797

    Article  Google Scholar 

  • Bühn B, Rankin AH, Schneider J, Dulski P (2002) The nature of orthomagmatic, carbonatitic fluids precipitating REE, Sr-rich fluorite: fluid-inclusion evidence from the Okorusu fluorite deposit, Namibia. Chem Geol 186:75–98

    Article  Google Scholar 

  • Chakmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Article  Google Scholar 

  • Costanzo A, Moore KR, Wall F, Feely M (2006) Fluid inclusions in apatite from Jacupirange calcite carbonatites: evidence for a fluid-stratified carbonatite magma chamber. Lithos 91:208–228

    Article  Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution, vol. Oxford University Press, New York

    Google Scholar 

  • Currie KL, Ferguson J (1971) A study of fenitization around the alkaline complex at Callander Bay, Ontario, Canada. Can J Earth Sci 8:498–517

    Google Scholar 

  • Dalton JA, Presnall DC (1998) The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO - MgO - Al2O3 -SiO2 - CO2 at 6 GPa. Jour Petrol 39:1953–1964

    Article  Google Scholar 

  • Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution, vol. Unwin Hyman, London, pp 301–359

    Google Scholar 

  • Drueppel K, Wagner T, Boyce AJ (2006) Evolution of sulfide mineralization in ferrocarbonatite, Swartbooisdrift, northeastern Namibia: constraints from mineral composition and sulfur isotopes. The Canadian Mineralogist 44:877–894

    Article  Google Scholar 

  • Gittins J (1989) The origin and evolution of carbonatite magmas. In: Bell K (ed) Carbonatites: genesis and evolution, vol. Unwin Hyman, London, pp 580–600

    Google Scholar 

  • Halama R, McDonough WF, Rudnick RL, Bell K (2008) Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet Sci Lett 265:726–742

    Article  Google Scholar 

  • Harmer RE (1999) The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa. Jour Petrol 40:525–548

    Article  Google Scholar 

  • Haynes EA, Moecher DP, Spicuzza MJ (2003) Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites: constraints on crystallization temperatures of carbonatite magmas. Chem Geol 193:43–57

    Article  Google Scholar 

  • Heimann A, Beard BL, Johnson CM (2008) The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochim Cosmochim Acta 72:4379–4396

    Article  Google Scholar 

  • Hill PS, Schauble EA (2008) Modeling the effects of bond environment on equilibrium iron isotope fractionation in ferric aquo-chloro complexes. Geochim Cosmochim Acta 72:1939–1958

    Article  Google Scholar 

  • Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Ann Rev Earth Planet Sci 36:457–493

    Article  Google Scholar 

  • Johnson CM, Roden EE, Welch SA, Beard BL (2005) Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim Cosmochim Acta 69(4):963–993

    Article  Google Scholar 

  • Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: IACVEI proceedings in volcanology, vol 4. Springer-Verlag, Berlin, pp 113–123

    Google Scholar 

  • King BC, Sutherland DL (1960) Alkaline rocks of eastern and southern Africa. Science Progress 298–321

  • Kjarsgaard BA (1998) Phase relations of a carbonated high-CaO nephelenite at 0.2 and 0.5 GPa. Jour Petrol 39:2061–2075

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites: genesis and evolution, vol. Unwin Hyman, London, pp 388–404

    Google Scholar 

  • Kramm U, Sindern S (1998) Nd and Sr isotope signatures of fenites from Oldoinyo Lengai, Tanzania, and their genetic relationships between nephelinites, phonolites and carbonatites. Jour Petrol 39:1997–2004

    Article  Google Scholar 

  • Kresten P, Morogan V (1986) Fenitization at the Fen Complex, southern Norway. Lithos 19:27–42

    Article  Google Scholar 

  • Le Bas MJ (1977) Carbonatite-nephelinite volcanism, vol. Wiley, Chichester

    Google Scholar 

  • Le Bas MJ (1989) Diversification of carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution, vol. Unwin Hyman, London, pp 428–447

    Google Scholar 

  • Le Bas MJ (2008) Fenites associated with carbonatites. The Canadian Mineralogist 46:915–932

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (1994) Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatites. International Geology Review 36:797–819

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (1998) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Jour Petrol 39:2005–2013

    Article  Google Scholar 

  • Lowers HA (2005) Origin of fibrous amphiboles in the Iron Hill carbonatite complex, Gunnison Country, Colorado. In, vol M.S. Colorado School of Mines, p 159

  • Marty B, Tolstikhin I, Kamensky IL, Nivin V, Balaganskaya E, Zimmerman JL (1998) Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle. Earth Planet Sci Lett 164:179–192

    Article  Google Scholar 

  • Morogan V (1989) Mass transfer and REE mobility during fenitization at Alnö, Sweden. Contrib Mineral Petrol 103:25–34

    Article  Google Scholar 

  • Morogan V (1994) Ijolite versus carbonatite as a source of fenitization. Terra Nova 6:166–176

    Article  Google Scholar 

  • Morogan V, Martin RF (1983) Mineralogy and partial melting of fenitized crustal xenoliths in the Oldoinyo Lengai carbonatitic volcano, Tanzania. Am Mineral 70:1114–1126

    Google Scholar 

  • Morogan V, Wooley AR (1988) Fenitization at the Alnö carbonatite complex, Sweden: distribution, mineralogy and genesis. Contrib Mineral Petrol 100:169–182

    Article  Google Scholar 

  • Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222(1–2):132–147

    Article  Google Scholar 

  • Poitrasson F, Halliday AN, Lee DC, Levasseur S, Teutsch N (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet Sci Lett 223(3–4):253–266

    Article  Google Scholar 

  • Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846

    Article  Google Scholar 

  • Polyakov VB, Mineev SD (2000) The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64:849–865

    Article  Google Scholar 

  • Rankin AH (2005) Carbonatite-associated rare metal deposits: composition and evolution of ore-forming fluids—the fluid inclusion evidence. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits, vol 17. Geological Association of Canada Short Course Notes, pp 299–314

  • Sage RP (1991) Alkalic rock, carbonatite and kimberlite complexes of Ontario, Superior Province. In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds) Geology of Ontario, Part 1, vol. Ontario Geological Survey, pp 683–709

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Article  Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP (2001) Theoretical estimates of equilibrium Fe-isotope 23 fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65(15):2487–2497

    Article  Google Scholar 

  • Schoenberg R, Marks MAW, Schuessler JA, Von Blanckenburg F, Markl G (2009) Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Illimaussaq complex, South Greenland. Chem Geol 258:65–77

    Article  Google Scholar 

  • Schoenberg R, Von Blanckenburg F (2006) Modes of planetary-scale Fe isotope fractionation. Chem Geol 252:342–359

    Google Scholar 

  • Schuessler JA, Schoenberg R, Behrens H, Von Blanckenburg F (2007) The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline 34 rhyolitic melt. Geochim Cosmochim Acta 71:417–433

    Article  Google Scholar 

  • Shahar A, Young ED, Manning CE (2008) Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration. Earth Planet Sci Lett 268:330–338

    Article  Google Scholar 

  • Shultis AI (2006) An iron isotope study of inter-mineral fractionations in mantle derived rocks. In. vol M.S. University of Wisconsin, Madison, p 96

    Google Scholar 

  • Simonetti A, Bell K (1993) Isotopic disequilibrium in clinopyroxenes from nephelinitic lavas, apak volcano, eastern Uganda. Geology 21:243–246

    Article  Google Scholar 

  • Simonetti A, Bell K (1994a) Isotopic and geochemical investigation of the Chilwa Island carbonatite complex, Malwai: evidence for a depleted mantle source region, liquid immiscibility, and open-system behaviour. Jour Petrol 35:1597–1621

    Google Scholar 

  • Simonetti A, Bell K (1994b) Nd, Pb and Sr isotopic data from the Napak carbonatite-nephelinite centre, eastern Uganda: an example of open-system crystal fractionation. Contrib Mineral Petrol 115:356–366

    Article  Google Scholar 

  • Simonetti A, Bell K, Shrady C (1997) Trace- and rare-earth-element geochemistry of the June 1993 natrocarbonatite lavas, Oldoinyo Lengai (Tanzania): Implications for the origin of carbonatite magmas. Jour Volcan Geotherm Res 75:89–106

    Article  Google Scholar 

  • Teng F-Z, Dauphas N, Helz RT (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320:1620–1622

    Article  Google Scholar 

  • Tolstikhin IN, Kamensky IL, Marty B, Nivin VA, Vetrin VR, Balaganskaya EG, Ikorsky SV, Gannibal MA, Weiss D, Verhulst A, Demaiffe D (2002) Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component. Geochim Cosmochim Acta 66:881–901

    Article  Google Scholar 

  • Valaas-Hyslop E, Valley JW, Johnson CM, Beard BL (2008) The effects of metamorphism on O and Fe isotope compositions in the Biwabik iron-formation, northern Minnesota. Contrib Mineral Petrol 155:313–328

    Article  Google Scholar 

  • Von Blanckenburg F, Mamberti M, Schoenberg R, Kamber BS, Webb GE (2008) The iron isotope composition of microbial carbonate. Chem Geol 249:113–128

    Article  Google Scholar 

  • Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67(22):4231–4250

    Article  Google Scholar 

  • Weyer S, Anbar A, Brey C, Münker C, Mezger K, Woodland A (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240:251–264

    Article  Google Scholar 

  • Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133

    Article  Google Scholar 

  • White-Pinilla KC (1996) Characterization of fenitizing fluids and processes involved in fenitization at the Iron Hills carbonatite complex, Gunnison Country, Colorado. In, vol M.S. Colorado School of Mines, p 170

  • Wiesli RA, Beard BL, Johnson CM (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems. Chem Geol 211(3–4):343–362

    Article  Google Scholar 

  • Williams-Jones AC, Palmer DAS (2002) The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatite, India: implications for fenitisation. Chem Geol 185:283–301

    Article  Google Scholar 

  • Williams HM, McCammon CA, Peslier AH, Halliday AN, Teutsch N, Levasseur S, Burg JP (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304:1656–1659

    Article  Google Scholar 

  • Williams HM, Peslier AH, McCammon CA, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235:435–452

    Article  Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database, vol 5796. Geological Survey of Canada Open File

  • Wyllie PJ, Lee WJ (1998) Model system controls on conditions for formation of magnesiocarbonatite and calciocarbonatite magmas from the mantle. Jour Petrol 39:1885–1893

    Article  Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the Southeastern Australian lithosphere. Jour Petrol 39:1917–1930

    Article  Google Scholar 

  • Zhu XK, Guo Y, Williams RJP, O'Nions RK, Matthews A, Belshaw NS, Canters GW, de Waal EC, Weser U, Burgess BK, Salvato B (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62

    Article  Google Scholar 

Download references

Acknowledgments

C.M.J., B.L.B., and A.I.S. thank the organizers of this special volume in honor of our co-author Keith Bell, including guest editor Antonio Simonetti. This work was supported by the Department of Geology and Geophysics (U.W. Madison), the Geological Society of America, and the National Science Foundation (grant EAR-0525417). In addition to samples in the collection of K.B., samples were provided by J.B. Dawson, D. Moecher, E. Haynes, and M. Spicuzza. Journal reviews were provided by R. Schoenberg and an anonymous reviewer, whose comments helped to improve the manuscript. We thank A. Simonetti for editorial handling of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark M. Johnson.

Additional information

Editorial handling: A. Simonetti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C.M., Bell, K., Beard, B.L. et al. Iron isotope compositions of carbonatites record melt generation, crystallization, and late-stage volatile-transport processes. Miner Petrol 98, 91–110 (2010). https://doi.org/10.1007/s00710-009-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0055-4

Keywords

Navigation