Skip to main content
Log in

A modification of the rigid finite element method and its application to the J-lay problem

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article presents the Rigid Finite Element Method (RFEM), which allows us to take into account the flexibility of a system. Beam-like structures are analyzed, in which large deformations occur. The RFEM has been developed many years ago and successfully applied to practical engineering problems. The main difference between this method and the classical Finite Element Method (FEM) is the element deformation during analysis. In RFEM, the finite elements generated in a discretization process are treated as nondeformable bodies, whilst in FEM the elements are deformable; in RFEM, flexible, mass-less elements with properly chosen coefficients are introduced. A modification of the stiffness coefficients used in RFEM is proposed and explained in the article. It is shown how these new coefficients applied in RFEM lead to the same energy of deformation as in the case when the system is discretized by the classical FEM. This means that the energy of deformation is identical to that obtained in FEM, which leads to identical deformations of the elements. It is of particular importance that the RFEM is a much simpler method, faster in calculations and easier to learn and interpret. Furthermore, the generation of the inertia and stiffness matrices is much faster than in FEM. Another advantage is relatively easy implementation for multicore processor architecture. The calculation examples investigated cover some practical problems related to the offshore pipe laying process. The J-lay method is simulated by the use of the author’s own computer model based on a modified RFEM. The model takes into account wave and sea current loads, hydrodynamic forces and material nonlinearity (plastic strains can develop during large deformation). The simulation results are compared with those obtained from the commercial package ANSYS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shabana A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  2. Shabana A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gerstmayr J., Shabana A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  4. Wojciech S., Adamiec-Wójcik I.: Nonlinear vibrations of spatial viscoelastic beams. Acta Mech. 98, 15–25 (1993)

    Article  MATH  Google Scholar 

  5. Wojciech S., Adamiec-Wójcik I.: Experimental and computational analysis of large amplitude vibrations of spatial viscoelastic beams. Acta Mech. 106, 127–136 (1994)

    Article  Google Scholar 

  6. Kruszewski, J.: Application of the stiff finite element method for calculation of natural vibration frequency of ship structure. In: Third World Congress of the Theory of Machines and Mechanisms, Kupari, Yugoslavia, pp. 147–160 (1971)

  7. Huston R.L.: Multi-body dynamics including the effect of flexibility and compliance. Comp. Struct. 14, 443–451 (1981)

    Article  Google Scholar 

  8. Nikravesh P., Chung I., Bendict R.L.: Plastic hinge approach to vehicle crash simulation. Comp. Struct. 16, 395–400 (1983)

    Article  Google Scholar 

  9. Winget J.M., Huston R.L.: Cable dynamics—a finite segment approach. Comput. Struct. 6(6), 475–480 (1976)

    Article  Google Scholar 

  10. Connelly J.D., Huston R.L.: The dynamics of flexible multibody systems: a finite segment approach I. Theoretical aspects. Comput. Struct. 50(2), 255–258 (1994)

    Article  Google Scholar 

  11. Connelly J.D., Huston R.L.: The dynamics of flexible multibody systems: a finite segment approach II. Example problems. Comput. Struct. 50(2), 259–262 (1994)

    Article  Google Scholar 

  12. Wittenburg J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart (1977)

    MATH  Google Scholar 

  13. Banerjee A.K.: Dynamics and control of the WISP shuttle-antennae system. J. Astronaut. Sci. 1, 73–90 (1993)

    Google Scholar 

  14. Schiehlen W.O., Rauh J.: Modelling of flexible multibeam systems by rigid-elastic superelements. Revista Brasiliera de Cienclas Mecanicas 8(2), 151–163 (1986)

    Google Scholar 

  15. Wittbrodt E., Wojciech S.: Application of rigid finite element method to dynamic analysis of spatial systems. J. Guid. Control Dyn. 18(4), 891–898 (1995)

    Article  Google Scholar 

  16. Wojciech S., Kłosowicz M., Nadolski W.: Nonlinear vibration of a simply supported, viscoelastic inextensible beam and comparison of four methods. Acta Mech. 85, 43–54 (1990)

    Article  Google Scholar 

  17. Wojnarowski J., Wojciech S.: Application of the rigid finite element method to modelling of free vibrations of a band saw frame. Mech. Mach. Theory 40(2), 241–258 (2005)

    Article  MATH  Google Scholar 

  18. Wittbrodt E., Adamiec-Wójcik I., Wojciech S.: Dynamics of Flexible Multibody Systems Rigid Finite Element Method. Springer, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  19. Braestrup M.W., Andersen J.B., Andersen L.W., Bryndum M.B., Christensen J.C., Nielsen N.J.R.: Design and Installation of Marine Pipelines. Blackwell Science Ltd., Oxford (2005)

    Google Scholar 

  20. Guo B., Song S., Chacko J., Ghalambor A.: Offshore Pipelines. Elsevier, Oxford (2005)

    Google Scholar 

  21. Szczotka M., Maczyński A., Wojciech S.: Mathematical model of a pipelay spread. Arch. Mech. Eng. LIV 1, 27–46 (2007)

    Google Scholar 

  22. Szczotka M.: Pipe laying simulation with an active reel drive. Ocean Eng. 37, 539–548 (2010)

    Article  Google Scholar 

  23. Chai Y.T., Varyani K.S.: An absolute coordinate formulation for three-dimensional flexible pipe analysis. Ocean Eng. 33, 23–58 (2006)

    Article  Google Scholar 

  24. Vogel H., Natvig B.J.: Dynamics of flexible hose riser systems. J. Offshore Mech. Arct. 109, 244–248 (1987)

    Article  Google Scholar 

  25. Vlahopoulos N., Bernitsas M.M.: Three-dimensional nonlinear dynamics of pipelaying. Appl. Ocean Res. 12, 112–125 (1990)

    Article  Google Scholar 

  26. Kalliontzis C., Andrianis E., Spyropoulos K., Soikas S.: Nonlinear static stress analysis of submarine high pressure pipelines. Comp. Struct. 63, 397–411 (1997)

    Article  Google Scholar 

  27. Pasqualino I.P., Estefen S.F.: A nonlinear analysis of the buckle propagation problem in deepwater pipelines. Int. J. Solids Struct. 38, 8481–8502 (2001)

    Article  MATH  Google Scholar 

  28. Nakajima, T., Motora, S., Fujino, M.: On the dynamic analysis of multi-component mooring lines. In: 14th Offshore Technology Conference, OTC-4309, pp. 105–121 (1982)

  29. Palmer A.: Touchdown indentation of the seabed. Appl. Ocean Res. 30, 235–238 (2008)

    Article  Google Scholar 

  30. Rienstra, S.W.: Analytical approximations for offshore pipelaying problems. In: Proceedings IClAM 87, pp. 99–108. Paris-La Villette (1987)

  31. Zhu D.S., Cheung Y.K.: Optimisation of bouyancy of an articulated stringer on submerged pipelines laid with a barge. Ocean Eng. 24, 301–311 (1997)

    Article  MATH  Google Scholar 

  32. Lenci S., Callegari M.: Simple analytical models for the J-lay problem. Acta Mech. 178, 23–39 (2005)

    Article  MATH  Google Scholar 

  33. Liu G.R., Quek S.S.: The Finite Element Method: A Practical Course. Butterworth-Heinemann, Oxford (2003)

    MATH  Google Scholar 

  34. Chapman B., Jost G., van der Pas R.: Using OpenMP: Portable Shared Memory Parallel. MIT Press, Cambridge (2008)

    Google Scholar 

  35. Szczotka M., Wojciech S.: Application of joint coordinates and homogeneous transformations to modeling of vehicle dynamics. Nonlinear Dyn. 52(4), 377–393 (2008)

    Article  MATH  Google Scholar 

  36. Morison J.R., O’Brien M.P., Johnson J.W., Schaaf S.A.: The force exerted by surface waves on piles. Pet. Trans. 189, 149–154 (1950)

    Google Scholar 

  37. DNV-RP-F105: Free Spanning Pipelines. Det Norske Veritas, Høvik, Norway (2006)

  38. Verley, R., Lund, K.M.: A soil resistance model for pipelines placed on clay soils. In: 14th International Conference on Offshore Mechanics & Arctic Engineering, Copenhagen (1995)

  39. Chakrabarti S.K.: Handbook of Offshore Engineering. Elsevier, Oxford (2005)

    Google Scholar 

  40. Ansys Documentation: Release 12. SAS IP (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Szczotka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczotka, M. A modification of the rigid finite element method and its application to the J-lay problem. Acta Mech 220, 183–198 (2011). https://doi.org/10.1007/s00707-011-0470-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0470-6

Keywords

Navigation