Skip to main content

Advertisement

Log in

Larval stage Lymantria dispar microRNAs differentially expressed in response to parasitization by Glyptapanteles flavicoxis parasitoid

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression by targeting messenger RNAs and causing cleavage or translation blockage. miRNAs induced after parasitization of the lepidopteran host Lymantria dispar by the parasitoid wasp Glyptapanteles flavicoxis, which introduces a polydnavirus and other parasitoid factors, were examined to identify induced miRNAs that might regulate host genes and contribute to host immunosuppression and other effects. miRNA profiling of parasitized larval hemocytes versus non-parasitized ones by microarray hybridization to mature insect and virus miRNAs identified 27 differentially expressed miRNAs after parasitization. This was confirmed by real-time relative qPCR for insect miRNAs (dme-mir-1, -8, -14, -184, -276, -277, -279, -289, -let-7) using miRNA-specific TaqMan™ assays. Certain cellular miRNAs were differentially expressed in larval tissues, such as the potentially developmentally linked mir-277, signifying a need for functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  4. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  5. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLOS Biol 3:e85

    Article  PubMed  Google Scholar 

  6. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  7. Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  PubMed  Google Scholar 

  8. Behura SK (2007) Insect microRNAs: structure, function and evolution. Insect Biochem Mol Biol 37:3–9

    Article  CAS  PubMed  Google Scholar 

  9. Gao X, Gulari E, Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73(5):579–596

    Article  CAS  PubMed  Google Scholar 

  10. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyde B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350

    Article  CAS  PubMed  Google Scholar 

  11. Weaver DB, Anzola JM, Evans JD, Reid JG, Reese JT, Childs KL, Zdobnov EM, Samanta MP, Miller J, Elsik CG (2007) Computational and transcriptional evidence for microRNAs in the honey bee genome. Genome Biol 8(6):R97

    Article  PubMed  Google Scholar 

  12. He PA, Nie Z, Chen J, Chen J, Lv Z, Sheng Q, Zhou S, Gao X, Kong L, Wu X, Jin Y, Zhang Y (2008) Identification and characteristics of microRNAs from Bombyx mori. BMC Genomics 9:248

    Article  PubMed  Google Scholar 

  13. Yu X, Zhou Q, Li S-C, Luo Q, Cai Y, Lin W-C, Chen H, Yang Y, Hu S, Yu J (2008) The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One 3(8):e2997

    Article  PubMed  Google Scholar 

  14. Webb BA, Strand MR (2005) The biology and genomics of polydnaviruses. In: Comprehensive molecular insect science, Elsevier, New York, pp 323–360

  15. Strand MR, McKenzie DI, Grassl V, Dover BA, Aiken JM (1992) Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens. J Gen Virol 73:1627–1635

    Article  CAS  PubMed  Google Scholar 

  16. Asgari S, Hellers M, Schmidt O (1996) Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. J Gen Virol 77:2653–2662

    Article  CAS  PubMed  Google Scholar 

  17. Béliveau C, Laforge M, Cusson M, Bellemare G (2000) Expression of a Tranosema rostrale polydnavirus gene in the spruce budworm, Choristoneura fumiferana. J Gen Virol 81:1871–1880

    PubMed  Google Scholar 

  18. Bennasser Y, Le SY, Yeung ML, Jeang KT (2004) HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 1:43

    Article  PubMed  Google Scholar 

  19. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  CAS  PubMed  Google Scholar 

  20. Li SC, Shiau CK, Lin WC (2007) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36:D184–D189

    Article  PubMed  Google Scholar 

  21. Murphy E, Vanıcek J, Robins H, Shenk T, Levine AJ (2008) Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. PNAS 105(14):5453–5458

    Article  CAS  PubMed  Google Scholar 

  22. Bell RA, Owens CD, Shapiro M, Tardif JR (1981) Development of mass-rearing technology. In: Donae CC, McManus ML (eds) The gypsy moth: research toward integrated pest management. United States Department of Agriculture, Washington, pp 599–633

  23. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  25. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M et al (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Xia Q, Zhao P, Cheng T, Hong K, Xiang Z (2007) Characterization and expression patterns of let-7 microRNA in the silkworm (Bombyx mori). BMC Dev Biol 7:88

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Gundersen-Rindal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gundersen-Rindal, D.E., Pedroni, M.J. Larval stage Lymantria dispar microRNAs differentially expressed in response to parasitization by Glyptapanteles flavicoxis parasitoid. Arch Virol 155, 783–787 (2010). https://doi.org/10.1007/s00705-010-0616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0616-1

Keywords

Navigation