Skip to main content
Log in

Least-squares harmonic estimation of the tropopause parameters using GPS radio occultation measurements

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

In order to investigate temporal variations of the tropopause parameters, Least-Squares Harmonic Estimation (LS-HE) is applied to the time series of the tropopause temperatures and heights derived from Global Positioning System Radio Occultation (GPS RO) atmospheric profiles of CHAMP, GRACE and COSMIC missions from January 2006 until May 2010 in different regions of Iran. By applying the univariate LS-HE to the completely unevenly spaced time series of the tropopause temperatures and heights, annual and diurnal components are detected together with their higher harmonics. The multivariate LS-HE estimates the main periodic signals, particularly diurnal and semidiurnal cycles, more clearly than the univariate LS-HE. Mixing in the values of the tropopause height and temperature is seen to occur in winter at lower latitudes (around 30°) as a result of subtropical jet, and in summer at higher latitudes (36°–42°) as an effect of subtropical high. A bimodal pattern is observed in the frequency histograms of the tropopause heights, in which the primary modes for the southern and northern parts of Iran correspond to subtropical and extratropical heights, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amiri-Simkooei AR (2007) Least-squares variance component estimation: Theory and GPS applications. Ph.D Dissertation, Mathematical Geodesy and Positioning, Faculty of Aerospace Engineering, Delft University of Technology

  • Amiri-Simkooei AR, Asgari J (2011) Harmonic analysis of total electron contents time series: methodology and results. J GPS Solut. doi: 10.1007/s10291-011-0208-x (Online FirstTM)

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112:B07413. doi:10.1029/2006JB004913

    Article  Google Scholar 

  • Gorbunov ME (1993) Three-dimensional satellite refractive tomography of the atmosphere: numerical-simulation. J Radio Sci 31:95–104

    Article  Google Scholar 

  • Gorbunov ME and Sokolovskiy SV (1993) Remote sensing of refractivity from space for global observations of atmospheric parameters. Max-Planck-Institute fur Meteorologie Report No. 119, Hamburg, Germany

  • Hajj GA, Ibanez-Meier R, Kursinski ER, Romans LJ (1994) Imaging the ionosphere with the global positioning system. Int J Imag Syst Tech 5:174–184

    Article  Google Scholar 

  • Hall CM, Hansen G, Sigernes F, Kuyeng Ruiz KM (2011) Tropopause height at 78 N 16 E: average seasonal variation 2007–2010. J Atmo Chem Phys Disc. doi:10.5194

    Google Scholar 

  • Hashiguchi NO, Yamanaka MD, Ogino S, Shiotani M, Sribimawati T (2006) Seasonal and interannual variations of temperature in the tropical tropopause layer (TTL) over Indonesia based on operational rawinsonde data during 1992–1999. J Geophys Res 111:D15110. doi:10.1029/2005JD006501

    Article  Google Scholar 

  • Healy SB (2001) Smoothing radio occultation bending angles above 40 km. Ann Geophys 19(4):459–478

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere-troposphere exchange. Rev Geophys 33(4):403–439

    Article  Google Scholar 

  • Hudson RD, Frolov AD, Andrade MF, Follette MB (2003) The total ozone field separated into meteorological regimes. Part I: defining the regimes. J Atmos Sci 60:1669–1677

    Article  Google Scholar 

  • Khandu JL, Awange J, Wickert J, Schmidt T, Sharifi MA, Heck B (2010) GNSS remote sensing of the Australian tropopause. Climatic Change 105:1–22

    Google Scholar 

  • Krishna Murthy BV, Parmeshwaran K, and Rose KO (1985) Temporal variation of the tropopause characteristics. J Atmos Sci 43:914–922, 986

    Google Scholar 

  • Kursinski ER, Hajj GA, Schofield T, Linfield RP, Hardy KR (1997) Observing earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465

    Article  Google Scholar 

  • Kursinski ER, Hajj GA, Leroy SS, Herman B (2000) The GPS radio occultation technique. Terr Atmos Ocean Sci 11(1):235–272

    Google Scholar 

  • Leroy SS, Ao CO, Verkhoglyadova O (2012) Mapping GPS Radio Occultation data by Bayesian interpolation. J Atmos Ocean Tech 29(8):1062–1074

    Article  Google Scholar 

  • Li W, Ma H, Pang Z, Cai Z (2010) Diurnal variations of tropopause over Wuhan. International Conference on Industrial Mechatronics and Automation

  • Lomb NR (1976) Least squares frequency analysis of unevenly spaced data. Astrophys Space Sci 39(2):447–462. doi:10.1007/BF00648343

    Article  Google Scholar 

  • Mehta SK (2010) Studies on Characteristics of tropical tropopause. Ph.D Dessertation, Atmospheric Science, Department of Atmospheric Sciences, School of Marine Sciences, Cochin University of Science And Technology, Cohin-682016, Kerala, India

  • Mortensen MD, Hoeg P (1998) Inversion of GPS occultation measurements using fresneldi:raction theory. Geophys Res Lett 25(13):2441–2444

    Article  Google Scholar 

  • Pan LL, Randel WJ, Gary BL, Mahoney MJ, Hintsa EJ (2004) Definitions and sharpness of the extratropicaltropopause: a trace gas perspective. J Geophys Res 109(D23):D23103

    Article  Google Scholar 

  • Randel WJ, Wu F, Gaffen DJ (2000) Interannnual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res 105(D12):15509–15523

    Article  Google Scholar 

  • Reid GC, Gage KS (1985) Interannual variations in the height of tropical tropopause. J Geophys Res 90:5629–5635

    Article  Google Scholar 

  • Reid GC, Gage KS (1996) The tropical tropopause over the western Pacific: Wave driving, convection, and the annual cycle. J Geophys Res 101:21233–21241

    Article  Google Scholar 

  • Revathy K, PrabhakaranNayar SR, Krishna Murthy BV (2001) Diurnal variation of tropospheric temperature at a tropical station. Annales Geophysicae 19:1001–1005

    Article  Google Scholar 

  • Santer BD, Sausen R, Wigley TML, Boyle JS, AchutaRao K, Doutriaux C, Hansen JE, Meehl GA, Roeckner E, Ruedy R, Schmidt G, Taylor KE (2003) Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: decadal changes. J Geophys Res 108(D1):4002. doi:10.1029/2002JD002258

    Article  Google Scholar 

  • Santer BD, Wigley TM, Simmons AJ, Kaallberg PW, Kelly GA, Uppala SM (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109:D21104

    Article  Google Scholar 

  • Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Z 12(3):131–136

    Article  Google Scholar 

  • Scargle JD (1989) Studies in astronomical time series analysis III.Autocorrelation and cross-correlation functions of unevenly sampled data. Astrophys J 343:874–887

    Article  Google Scholar 

  • Scargle JD (1997) Astronomical time series analysis: new methods for studying periodic and aperiodic systems. In: Maoz D, Steinberg A, Leibowitz EM (eds) Astronomical time series. Kluwer, Dordrecht, p 1

    Google Scholar 

  • Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem phys 5:1473–1488

    Google Scholar 

  • Schmidt T, Wickert J, Haser A (2010) Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv Space Res 46(2010):150–161. doi:10.1016/j.asr.2010.01.021

    Article  Google Scholar 

  • Schoeberl MR (2004) Extratropical stratosphere-troposphere mass exchange. J Geophys Res 109(D13):D13303

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112:D20113. doi:10.10292007JD008861

    Article  Google Scholar 

  • Son SW, Lee S (2007) Intraseasonal variability of the zonal mean tropical tropopause height. J Atmos Sci 64:2695–2706

    Article  Google Scholar 

  • Steiner AK, Lackner BC, Ladstadter F, Scherllin-Pirscher B, Foelsche U, Kirchengast G (2011) GPS radio occultation for climate monitoring and change detection. Radio Sci 46:RSOD24. doi:10.1029/2010RS004614

    Article  Google Scholar 

  • Vanicek P (1971) Further development and properties of the spectral analysis by least-squares. Astrophys Space Sci 12(1):10–33. doi:10.1007/BF00656134

    Article  Google Scholar 

  • Wickert J, Beyerle G, Schmidt T, Healy SB, Heise S, Michalak G, Rothacher M (2006) GPS based atmospheric sounding with CHAMP: results achieved after four years. In: Proceedings of the 2005 EUMETSAT Meteorological Satellite Conference, Dubrovnik, Croatia

  • Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S et al (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. TerrAtmos Ocean Sci 20:35–50

    Google Scholar 

  • WMO (1957) Definition of tropopause. World Meteorological Organisation, Geneva

    Google Scholar 

  • Zängl G, Hoinka KP (2001) Thetropopause in the polar regions. J Climate 14:3117–3139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sam Khaniani.

Additional information

Responsible editor: C. Simmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharifi, M.A., Sam Khaniani, A., Masoumi, S. et al. Least-squares harmonic estimation of the tropopause parameters using GPS radio occultation measurements. Meteorol Atmos Phys 120, 73–82 (2013). https://doi.org/10.1007/s00703-013-0239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-013-0239-7

Keywords

Navigation