Skip to main content

Advertisement

Log in

Initiation of deep convection caused by land-surface inhomogeneities in West Africa: a modelled case study

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Simulations with the Consortium for Small Scale Modelling model were performed to investigate the impact of land surface inhomogeneities on the initiation of convection. A case from the African Monsoon Multidisciplinary Analysis campaign, 11 June 2006, was selected. On this day, a mesoscale convective system was observed and simulated. The simulation scenarios included a realistic and an increased initial soil moisture distribution as well as a homogeneous soil moisture and texture field. Land use and orography were the same in all runs. Heat and moisture budget calculations were applied to analyse the processes responsible for the evolution of pre-convective atmospheric conditions and convection-triggering thermally induced circulation systems. Convective cells were initiated in all experiments. However, the amount of cells, their origin, evolution, and precipitation amount differed. First shallow clouds were initiated over areas with higher sensible heat fluxes. The evolution of subsequent deep convection was triggered by secondary circulation systems caused by baroclinic conditions generated by clouded and unclouded regions. The further evolution of the precipitation cells strongly depended on convective inhibition in the areas the cells moved into.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baker RD, Lynn BH, Boone A, Tao WK, Simpson J (2001) The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J Hydrometeorol 2:193–211

    Article  Google Scholar 

  • Barthlott C, Corsmeier U, Meißner C, Braun F, Kottmeier C (2006) The influence of mesoscale convective systems on triggering convective cells over complex terrain. Atmos Res 81:150–175

    Article  Google Scholar 

  • Chaboureau JP, Guichard F, Redelsperger JL, Lafore JP (2004) The role of stability and moisture in the diurnal cycle of convection over land. Q J R Meteorol Soc 130:3105–3117. doi:10.1256/qj.03.132

    Article  Google Scholar 

  • Chong M (2010) The 11 August 2006 squall-line system as observed from MIT Doppler radar during the AMMA SOP. Q J R Meteorol Soc 136(s1):209–226

    Article  Google Scholar 

  • Doms G, Förstner J (2004) Development of a kilometer-scale NWP-system: LMK. COSMO Newsl 4:159–167, http://www.cosmo-model.org

    Google Scholar 

  • Doms G, Schättler U (2002) A description of the non-hydrostatic regional LM-Model. Part I. Dynamics and numerics. Deutscher Wetterdienst http://www.cosmo-model.org

  • Doms G, Förstner J, Heise E, Herzog HJ, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2007) A description of the non-hydrostatic regional LM-Model. Part II. Physical parametrization. Deutscher Wetterdienst http://www.cosmo-model.org

  • Emori S (1998) The interaction of cumulus convection with soil moisture distribution: an idealized simulation. J Geophys Res 103:8873–8884

    Article  Google Scholar 

  • Fink AH, Vincent D, Ermert V (2006) Rainfall types in the West African Sudanian zone during the summer monsoon 2002. Mon Weather Rev 134:2143–2164

    Article  Google Scholar 

  • Flamant C, Chaboureau JP, Parker DJ, Taylor CM, Cammas JP, Bock O, Timouk F, Pelon J (2007) Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Q J R Meteorol Soc 133:1175–1189. doi:10.1002/qj.97

    Article  Google Scholar 

  • Gaertner MA, Domínguez M, Garvert M (2010) A modelling case study of soil-atmosphere coupling. Q J R Meteorol Soc 136(s1):483–495

    Article  Google Scholar 

  • Gantner L, Kalthoff N (2010) Sensitivity of a modelled life cycle of a mesoscale convective system to soil conditions over West Africa. Q J R Meteorol Soc 136(s1):471–482. doi:10.1002/qj.425

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, London

  • Grams C, Jones S, Douglas P, Marsham J, Haywood J, Heuveline V (2010) The Atlantic inflow to the Saharan heat low: observations and modelling. Q J R Meteorol Soc 136(s1):125–140. doi:10.1002.qj.429

    Article  Google Scholar 

  • Guichard F, Asencio N, Peugeot C, Bock O, Redelsperger JL, Cui X, Garvert M, Lamptey B, Orlandi E, Sander J, Fierli F, Gaertner MA, Jones S, Lafore JP, Morse A, Nuret M, Boone A, Balsamo G, de Rosnay P, Decharme B, Harris PP, Bergès JC (2010) An intercomparison of simulated rainfall and evapotranspiration associated with a mesoscale convective system over West Africa. Wea Forecasting 25:37–60. doi:10.1175/2009WAF2222250.1

    Article  Google Scholar 

  • Heise E, Lange M, Ritter B, Schrodin R (2003) Improvement and validation of the multi-layer soil model. COSMO Newsletter 3:198–203, http://www.cosmo-model.org

    Google Scholar 

  • Kohler M, Kalthoff N, Kottmeier C (2010) The impact of soil moisture modifications on CBL characteristics in West Africa: a case-study from the AMMA campaign. Q J R Meteorol Soc 136(s1):442–455. doi:10.1002/qj.430

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (the GLACE Team) (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Google Scholar 

  • Lauwaet D, van Lipzig NPM, Kalthoff N, Ridder KD (2010) Impact of vegetation changes on a mesoscale convective system in West Africa. Meteorol Atmos Phys 107:109–122. doi:10.1007/s00703-010-0079-7

    Google Scholar 

  • Lebel T, Delclaux F, LeBarbè L, Polcher J (2000) From GCM scales to hydrological scales: rainfall variability in West Africa. Stochastic Environ Res Risk Assess 14:275–295

    Article  Google Scholar 

  • Lebel T, Parker DJ, Flamant C, Bourleés B, Marticorena B, Mougin E, Peugeot C, Diedhiou A, Haywood JM, JB JBN, Polcher J, Redelsperger JL, Thorncroft CD (2010) The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region. Q J R Meteorol Soc 136(s1):8–33

    Google Scholar 

  • Mahouf JF, Richard E, Mascart P (1987) The influence of soil and vegetation on the development of mesoscale circulations. J Clim Appl Meteorol 28:1483–1495

    Google Scholar 

  • Mathon V, Laurent H, Lebel T (2002) Mesoscale convective system rainfall in the Sahel. J Appl Meteorol 41:1081–1092

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical flow problems. Rev Geophys Space Phys 20:831–875. doi:10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2

  • Parker DJ (2002) The response of CAPE and CIN to tropospheric thermal variations. Q J R Meteorol Soc 128:119–130

    Article  Google Scholar 

  • Parker DJ, Fink A, Janicot S, Ngamini JB, Douglas M, Afiesimama E, Agusti-Panareda A, Beljaars A, Dide F, Diedhiou A, Lebel T,J, Redelsperger JL, Thorncroft CD, Wilson GA (2008) The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bull Am Meteorol Soc 89:1015–1027

    Article  Google Scholar 

  • Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177

    Article  Google Scholar 

  • Rabin RM, Stadler S, Wetzel PJ, Stensrud DJ, Gregory M (1990) Observed effects of landscape variability on convective clouds. Bull Amer Meteor Soc 71:272–280

    Article  Google Scholar 

  • Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsl 1:89–97, http://www.cosmo-model.org

  • Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African Monsoon Multidisciplinary Analysis: an international research project and field campaign. Bull Am Meteorol Soc 87:1739–1746

    Article  Google Scholar 

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325. doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2

  • Schättler U, Doms G, Schraff C (2008) A description of the non-hydrostatic regional COSMO-Model. Part VII. User’s Guide. Deutscher Wetterdienst http://www.cosmo-model.org

  • Schwendike J, Jones S (2010) Convection in an African Easterly Wave over West Africa and the eastern Atlantic: a model case study of Helene (2006). Q J R Meteorol Soc 136(s1):364–396. doi:10.1002/qj.566

  • Schwendike J, Kalthoff N, Kohler M (2010) The impact of mesoscale convective systems on the surface and boundary layer structure in West Africa during the AMMA campaign. Q J R Meteorol Soc 136:566–582. doi:10.1002/qj.599

    Article  Google Scholar 

  • Segal M, Arritt RW (1992) Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull Am Meteorol Soc 73:1593–1604

    Article  Google Scholar 

  • Segal M, Purdom JFW, Song JL, Pielke RA, Mahrer Y (1986) Evaluation of cloud shading effects on the generation and modification of mesoscale circulations. Mon Weather Rev 114:1201–1212

    Article  Google Scholar 

  • Taylor CM, Ellis RJ (2006) Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys Res Lett 33:L03404. doi:10.1029/2005GL025252

  • Taylor CM, Parker DJ, Harris PP (2007) An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys Res Lett 34:L15801

    Google Scholar 

  • Taylor CM, Harris PP, Parker DJ (2010) Impact of soil moisture on the development of a Sahelian mesoscale convective system: a case-study from the AMMA Special Observing Period. Q J R Meteorol Soc 136(s1):456–470

    Article  Google Scholar 

  • Taylor CM, Parker DJ, Kalthoff N, Gaertner MA, Philippon N, Bastin S, Harris PP, Boone A, Guichard F, Agusti-Panareda A, Baldi M, Cerlini P, Descroix L, Douville H, Flamant C, Grandpeix JY, Polcher J (2011) New perspectives on land-atmosphere feedbacks from the African Monsoon Multidisciplinary Analysis (AMMA). Atmospheric Sci Lett 12:38–44. doi:10.1002/asl.336

    Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi:10.1175/1520-0493(1989)117<1779;ACMFSF>2.0.CO;2

  • Trier SB (2003) Convective storms - convective initiation. In: Holton JR, Curry JA, Pyle JA (eds) Encyclopedia of atmospheric sciences, vol 2. Academic Press, London

  • Warner TT (2004) Desert meteorology. Cambridge University Press, London

  • Weisman ML, Skamarock WC, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon Weather Rev 125:527–548

    Article  Google Scholar 

  • Williams E, Renno N (1993) An analysis of the conditional instability of the tropical atmosphere. Mon Weather Rev 121:21–36

    Article  Google Scholar 

Download references

Acknowledgments

Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies. It has been the beneficiary of a major financial contribution from the European Community’s Sixth Framework Research Programme. Detailed information on scientific coordination and funding is available on the AMMA international web site http://amma-international.org. Acknowledgment is made for the use of ECMWF’s computing and archive facilities through the special project ‘Mesoscale modelling using the DWD COSMO-Modell’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Adler.

Additional information

Responsible editor: B. Holtslag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, B., Kalthoff, N. & Gantner, L. Initiation of deep convection caused by land-surface inhomogeneities in West Africa: a modelled case study. Meteorol Atmos Phys 112, 15–27 (2011). https://doi.org/10.1007/s00703-011-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-011-0131-2

Keywords

Navigation