Skip to main content

Advertisement

Log in

Far field potentials from brain stem after transcutaneous Vagus nerve stimulation: optimization of stimulation and recording parameters

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The method of vagus somatosensory evoked potentials (VSEP) was introduced to easily measure the activity of vagus brain stem nuclei. In Alzheimer’s disease, this measure was characterized by longer latencies as compared to controls while amplitudes did not show statistical significant differences at frontal and central recording sites. Therefore, the influence of stimulation and recording parameters on amplitudes of VSEP were systematically examined. In 20 healthy participants, VSEP measurement was done by electrical stimulation of the cutaneous representation of the vagus nerve in the external auditory channel and recording of VSEP over the scalp. The optimum stimulation intensity is 8 mA without perception of pain. There is no effect of stimulation side or gender. Maximum VSEP amplitudes are detected at bipolar recordings comprising the electrode T4 without statistically significant differences of latencies, wave shape and polarity. Thus, recordings of future examinations should be performed at 8 mA including this temporal electrode position. The reason for focussing on brain stem evoked potentials is that recent work has accumulated evidence for this area being involved in early phases of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Improved methodological knowledge may facilitate the assessment of this non-invasive and cost-effective method in the early diagnosis of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Braak H, Rüb U, Gai W, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Article  PubMed  CAS  Google Scholar 

  • Chiappa KH (1983) Evoked potentials in clinical medicine. Raven Press, New York, p 1938

  • Del Tredici K, Rüb U, De Vos RA, Bohl JR, Braak H (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    PubMed  Google Scholar 

  • Drechsler F, Neuhauser B (1986) Somatosensory trigeminal evoked potentials in normal subjects and in patients with trigeminal neuralgia before and after thermocoagulation of the Ganglion gasseri. Electromyogr Clin Neurophysiol 26:315–326

    PubMed  CAS  Google Scholar 

  • Fallgatter AJ, Neuhauser B, Herrmann MJ, Ehlis AC, Wagener A, Scheuerpflug P, Reiners K, Riederer P (2003) Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J Neural Transm 110:1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Fallgatter AJ, Ehlis AC, Ringel TM, Herrmann MJ (2005) Age-effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Int J Psychophysiol 56:37–43

    Article  PubMed  Google Scholar 

  • Fallgatter AJ, Polak T, Metzger F, Richter MM, Baehne CG, Plichta MM, Scheuerpflug P, Ehlis AC, Fallgatter AJ (2006) Brainstem vagus nuclei evoked potentials—a new diagnostic method in neuropsychiatry? Nervenheilkunde 25:669–673

    Google Scholar 

  • Fisch U, Schulthess GV (1963) Electromyographic studies on the human stapedial muscle. Acta Otolaryngol 56:287–297

    Article  PubMed  CAS  Google Scholar 

  • George MS, Nahas Z, Bohning DE, Lomarev M, Denslow S, Ochsenbach R, Ballenger JC (2000) Vagus nerve stimulation: a new form of therapeutic brain stimulation. CNS Spectr 5:43–52

    PubMed  CAS  Google Scholar 

  • George MS, Nahas Z, Bohning DE, Kozel FA, Anderson B, Chae JH, Lomarev M, Denslow S, Li X, Mu C (2002) Vagus nerve stimulation therapy. A research update. Neurology 59:S56–S61

    PubMed  Google Scholar 

  • Grinnell AD (1963) The neurophysiology of audition in bats: intensity and frequency parameters. J Physiol Lond 167:38–66

    PubMed  CAS  Google Scholar 

  • Hammond EJ, Wilder BJ (1985) Enhanced auditory postauricular evoked responses after corticobulbar lesions. Neurology 35:278–281

    PubMed  CAS  Google Scholar 

  • Ito S (2002) Visceral region in the rat primary somatosensory cortex identified by vagal evoked potential. J Comp Neurol 444:10–24

    Article  PubMed  Google Scholar 

  • Jaspers HH (1958) Report of the committee on methods of clinical examination in electroencephylography. Electroencephalogr Clin Neurophysiol 10:370–371

    Article  Google Scholar 

  • Jewett DL, Williston JS (1971) Auditory-evoked far fields averaged from the scalp of humans. Brain 94:681–696

    Article  PubMed  CAS  Google Scholar 

  • Jewett DL, Romano MN, Williston JS (1970) Human auditory evoked potentials: possible brain stem components detected on the scalp. Science 167:1517–1518

    Article  PubMed  CAS  Google Scholar 

  • Kiess O, Hösel K, Schanze A, Kornhuber J, Foster C, Kraus T (2007) Transkutane Vagusnerv-Stimulation im anterioren Gehörgang führt zur fMRI BOLD-Signal Hyperaktivation eines Vagus-Kerngebietes im Hirnstamm. Nervenarzt 78:276–277

    Google Scholar 

  • Kraus T, Hösl K, Kiess O, Schanze A, Kornhuber J, Forster C (2007) BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm 114:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Parvizi J, Van Hoesen GW, Damasio A (2001) The selective vulnerability of brain stem nuclei to Alzheimer’s disease. Ann Neurol 49:53–66

    Article  PubMed  CAS  Google Scholar 

  • Peukert ET, Filler TJ (2002) The nerve supply of the human auricle. Clin Anat 15:35–37

    Article  Google Scholar 

  • Polak T, Ehlis AC, Langer J, Plichta M, Metzger F, Ringel TM, Fallgatter AJ (2007) Non-invasive measurement of vagus activity in the brainstem—a methodological progress towards earlier diagnosis of dementias? J Neural Transm 110:1437–1443

    Google Scholar 

  • Riederer P (2002) Psychiatric disorders and Parkinson’s disease: basic concepts. Eur Arch Psych Clin Neurosci 252(Suppl 1):9

    Google Scholar 

  • Schachter SC (2004) Vagus nerve stimulation: mood and cognitive effects. Epilepsy Behav 5:S56–S59

    Article  PubMed  Google Scholar 

  • Sobotta J (1982) Atlas der Anatomie des Menschen. Urban & Schwarzenberg, München, pp 138–139

  • Stechison MT (1993) The trigeminal evoked potential: Part II. Intraoperative recording of short latency responses. Neurosurgery 33:639–644

    Article  PubMed  CAS  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A[beta]-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Polak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polak, T., Markulin, F., Ehlis, AC. et al. Far field potentials from brain stem after transcutaneous Vagus nerve stimulation: optimization of stimulation and recording parameters. J Neural Transm 116, 1237–1242 (2009). https://doi.org/10.1007/s00702-009-0282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0282-1

Keywords

Navigation